Advertisement

Urine pp 93-103 | Cite as

Candidate Urinary Biomarker Discovery in Gliomas

  • Jianqiang Wu
  • Yanying Ni
Chapter

Abstract

Gliomas are the most common primary malignant brain tumors and have a very poor prognosis. Urine, which is not controlled by homeostatic mechanisms, can accumulate changes in the body and therefore is an ideal source for biomarker discovery. In this chapter, urine samples of animal models and glioma patients were investigated to identify candidate biomarkers of gliomas using proteomics analysis. The animal model was induced by injection of C6 cells in rat brain. Then rat urine samples were collected on days 2, 6, 10, and 13 after C6 cell inoculation. Urine samples from glioma patients were collected before and after tumor resection. Our results suggested that urinary proteins have potential as early sensitive biomarkers for detection and monitoring gliomas.

Keywords

Gliomas Urine Proteomics Cancer biomarkers Early detection 

References

  1. An M, Gao Y. Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics. 2015;13(6):345–54.  https://doi.org/10.1016/j.gpb.2015.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bensalma S, Chadeneau C, Legigan T, Renoux B, Gaillard A, de Boisvilliers M, Pinet-Charvet C, Papot S, Muller JM. Evaluation of cytotoxic properties of a cyclopamine glucuronide prodrug in rat glioblastoma cells and tumors. J Mol Neurosci. 2015;55(1):51–61.  https://doi.org/10.1007/s12031-014-0395-3.CrossRefPubMedGoogle Scholar
  3. Cheng YX, Li F, Lu JY, Li M, Du P, Xu GL, Feng H. Growth of G422 glioma implanted in the mouse brain was affected by the immune ability of the host. Chin Med J. 2011;124(13):1994–8.PubMedGoogle Scholar
  4. Doan NB, Nguyen HS, Montoure A, Al-Gizawiy MM, Mueller WM, Kurpad S, Rand SD, Connelly JM, Chitambar CR, Schmainda KM, Mirza SP. Acid ceramidase is a novel drug target for pediatric brain tumors. Oncotarget. 2017;8(15):24753–61.  https://doi.org/10.18632/oncotarget.15800.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6.  https://doi.org/10.1007/s11427-013-4574-1.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gao H, Yu B, Yan Y, Shen J, Zhao S, Zhu J, Qin W, Gao Y. Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J Neurosurg. 2013;118(4):846–53.  https://doi.org/10.3171/2012.9.JNS112134.CrossRefPubMedGoogle Scholar
  7. Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois CE, Haider S, Piperidou C, Pappa A, Gatter KC, Harris AL, Koukourakis MI. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther. 2014;15(11):1468–78.  https://doi.org/10.4161/15384047.2014.955719.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Grobben B, De Deyn PP, Slegers H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 2002;310(3):257–70.  https://doi.org/10.1007/s00441-002-0651-7.CrossRefPubMedGoogle Scholar
  9. Han S, Lv X, Wang Y, Gong H, Zhang C, Tong A, Zhang B, Yao H. Effect and mechanism of peroxisome proliferator-activated receptor-gamma on the drug resistance of the U-87 MG/CDDP human malignant glioma cell line. Mol Med Rep. 2015;12(2):2239–46.  https://doi.org/10.3892/mmr.2015.3625.CrossRefPubMedGoogle Scholar
  10. He Q, Shi X, Zhang L, Yi C, Zhang X, Zhang X. De novo glutamine synthesis: importance for the proliferation of Glioma cells and potentials for its detection with 13N-ammonia. Mol Imaging. 2016;15  https://doi.org/10.1177/1536012116645440.CrossRefGoogle Scholar
  11. Hung KS, Howng SL. Prognostic significance of annexin VII expression in glioblastomas multiforme in humans. J Neurosurg. 2003;99(5):886–92.  https://doi.org/10.3171/jns.2003.99.5.0886.CrossRefPubMedGoogle Scholar
  12. Iwadate Y, Matsutani T, Hirono S, Shinozaki N, Saeki N. Transforming growth factor-beta and stem cell markers are highly expressed around necrotic areas in glioblastoma. J Neuro-Oncol. 2016;129(1):101–7.  https://doi.org/10.1007/s11060-016-2145-6.CrossRefGoogle Scholar
  13. Kore RA, Abraham EC. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem Biophys Res Commun. 2014;453(3):326–31.  https://doi.org/10.1016/j.bbrc.2014.09.068.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kros JM, Mustafa DM, Dekker LJ, Sillevis Smitt PA, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro-Oncology. 2015;17(3):343–60.  https://doi.org/10.1093/neuonc/nou207.CrossRefPubMedGoogle Scholar
  15. Kumar DM, Thota B, Shinde SV, Prasanna KV, Hegde AS, Arivazhagan A, Chandramouli BA, Santosh V, Somasundaram K. Proteomic identification of haptoglobin alpha2 as a glioblastoma serum biomarker: implications in cancer cell migration and tumor growth. J Proteome Res. 2010;9(11):5557–67.  https://doi.org/10.1021/pr1001737.CrossRefPubMedGoogle Scholar
  16. Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, Schnolzer M, Tudoran R, Weller M, Platten M, Wick W. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res. 2012;18(1):105–17.  https://doi.org/10.1158/1078-0432.CCR-11-0880.CrossRefPubMedGoogle Scholar
  17. Liu MF, Jin T, Shen JH, Shen ZY, Zheng ZC, Zhang ZL, Xu LY, Li EM, Xu HX. NGAL and NGALR are frequently overexpressed in human gliomas and are associated with clinical prognosis. J Neuro-Oncol. 2011;104(1):119–27.  https://doi.org/10.1007/s11060-010-0486-0.CrossRefGoogle Scholar
  18. Liu MF, Hu YY, Jin T, Xu K, Wang SH, Du GZ, Wu BL, Li LY, Xu LY, Li EM, Xu HX. Matrix Metalloproteinase-9/neutrophil Gelatinase-associated Lipocalin complex activity in human Glioma samples predicts tumor presence and clinical prognosis. Dis Markers. 2015;2015:138974.  https://doi.org/10.1155/2015/138974.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.  https://doi.org/10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lu J, Ksendzovsky A, Yang C, Mehta GU, Yong RL, Weil RJ, Park DM, Mushlin HM, Fang X, Balgley BM, Lee DH, Lee CS, Lonser RR, Zhuang Z. CNTF receptor subunit alpha as a marker for glioma tumor-initiating cells and tumor grade: laboratory investigation. J Neurosurg. 2012;117(6):1022–31.  https://doi.org/10.3171/2012.9.JNS1212.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Martelli C, Iavarone F, D'Angelo L, Arba M, Vincenzoni F, Inserra I, Delfino D, Rossetti DV, Caretto M, Massimi L, Tamburrini G, Di Rocco C, Caldarelli M, Messana I, Castagnola M, Sanna MT, Desiderio C. Integrated proteomic platforms for the comparative characterization of medulloblastoma and pilocytic astrocytoma pediatric brain tumors: a preliminary study. Mol BioSyst. 2015;11(6):1668–83.  https://doi.org/10.1039/c5mb00076a.CrossRefPubMedGoogle Scholar
  22. Matsuura H, Nakazawa S. Prognostic significance of serum alpha 1-acid glycoprotein in patients with glioblastoma multiforme: a preliminary communication. J Neurol Neurosurg Psychiatry. 1985;48(8):835–7.CrossRefGoogle Scholar
  23. Monod L, Hamou MF, Ronco P, Verroust P, de Tribolet N. Expression of cALLa/NEP on gliomas: a possible marker of malignancy. Acta Neurochir. 1992;114(1–2):3–7.CrossRefGoogle Scholar
  24. Ni Y, Zhang F, An M, Yin W, Gao Y. Early candidate biomarkers found from urine of glioblastoma multiforme rat before changes in MRI. Sci China Life Sci. 2018;61(8):982–7.  https://doi.org/10.1007/s11427-017-9201-0.CrossRefPubMedGoogle Scholar
  25. Nijaguna MB, Schroder C, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Hoheisel JD, Somasundaram K. Definition of a serum marker panel for glioblastoma discrimination and identification of interleukin 1beta in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein. J Proteome. 2015;128:251–61.  https://doi.org/10.1016/j.jprot.2015.07.026.CrossRefGoogle Scholar
  26. Niu H, Wang K, Wang Y. Polymeric immunoglobulin receptor expression is predictive of poor prognosis in glioma patients. Int J Clin Exp Med. 2014;7(8):2185–90.PubMedPubMedCentralGoogle Scholar
  27. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.CrossRefGoogle Scholar
  28. Ohtaki S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Noshiro S, Akiyama Y, Mikami T, Mikuni N, Kocsis JD, Honmou O. ACTC1 as an invasion and prognosis marker in glioma. J Neurosurg. 2017;126(2):467–75.  https://doi.org/10.3171/2016.1.jns152075.CrossRefPubMedGoogle Scholar
  29. Pan SJ, Zhan SK, Ji WZ, Pan YX, Liu W, Li DY, Huang P, Zhang XX, Cao CY, Zhang J, Bian LG, Sun B, Sun QF. Ubiquitin-protein ligase E3C promotes glioma progression by mediating the ubiquitination and degrading of Annexin A7. Sci Rep. 2015;5:11066.  https://doi.org/10.1038/srep11066.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pei J, Moon KS, Pan S, Lee KH, Ryu HH, Jung TY, Kim IY, Jang WY, Jung CH, Jung S. Proteomic analysis between U87MG and U343MG-A cell lines: searching for candidate proteins for Glioma invasion. Brain Tumor Res Treat. 2014;2(1):22–8.  https://doi.org/10.14791/btrt.2014.2.1.22.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Quick Q, Skalli O. Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Exp Cell Res. 2010;316(7):1137–47.  https://doi.org/10.1016/j.yexcr.2010.02.011.CrossRefPubMedGoogle Scholar
  32. Ramirez-Exposito MJ, Mayas-Torres MD, Carrera-Gonzalez MP, Jimenez-Pulido SB, Illan-Cabeza NA, Sanchez-Sanchez P, Hueso-Urena F, Martinez-Martos JM, Moreno-Carretero MN. Silver(I)/6-hydroxyiminolumazine compounds differently modify renin-angiotensin system-regulating aminopeptidases a and N in human neuroblastoma and glioma cells. J Inorg Biochem. 2014;138:56–63.  https://doi.org/10.1016/j.jinorgbio.2014.04.019.CrossRefPubMedGoogle Scholar
  33. Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, Beznoussenko G, Mironov A, Rappa G, Cuomo A, Faretta M, Bonaldi T, Lorico A, Pelicci G. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget. 2015;6(31):31413–27.  https://doi.org/10.18632/oncotarget.5105.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shao C, Li M, Li X, Wei L, Zhu L, Yang F, Jia L, Mu Y, Wang J, Guo Z, Zhang D, Yin J, Wang Z, Sun W, Zhang Z, Gao Y. A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database. Mol Cell Proteomics. 2011;10(11):M111 010975.  https://doi.org/10.1074/mcp.M111.010975.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shimizu M, Tanaka M, Atomi Y. Small heat shock protein alphaB-Crystallin controls shape and adhesion of Glioma and myoblast cells in the absence of stress. PLoS One. 2016;11(12):e0168136.  https://doi.org/10.1371/journal.pone.0168136.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Smith ER, Zurakowski D, Saad A, Scott RM, Moses MA. Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res. 2008;14(8):2378–86.  https://doi.org/10.1158/1078-0432.CCR-07-1253.CrossRefPubMedGoogle Scholar
  37. Stavrinou P, Mavrogiorgou MC, Polyzoidis K, Kreft-Kerekes V, Timmer M, Marselos M, Pappas P. Expression profile of genes related to drug metabolism in human brain Tumors. PLoS One. 2015;10(11):e0143285.  https://doi.org/10.1371/journal.pone.0143285.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tynninen O, Carpen O, Jaaskelainen J, Paavonen T, Paetau A. Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol. 2004;30(5):472–7.  https://doi.org/10.1111/j.1365-2990.2004.00562.x.CrossRefPubMedGoogle Scholar
  39. Wang JY, Bettegowda C. Genetics and immunotherapy: using the genetic landscape of gliomas to inform management strategies. J Neuro-Oncol. 2015;123(3):373–83.  https://doi.org/10.1007/s11060-015-1730-4.CrossRefGoogle Scholar
  40. Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–36.  https://doi.org/10.1586/14789450.2015.1094380.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wu J, Zhang J, Zhao Y, Gao Y. Candidate urine biomarker discovery from only five pairs of samples before and after tumor resection in glioma patients. bioRxiv; 2018.  https://doi.org/10.1101/240861.
  42. Xu G, Li W, Zhang P, Ding Z, Zhao H, Zhang J, Wang M. Silencing of carcinoembryonic antigen-related cell adhesion molecule 1 inhibits proliferation and induces apoptosis in human glioma SHG44 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(1):23–6.. 31PubMedGoogle Scholar
  43. Yan H, Yang K, Xiao H, Zou YJ, Zhang WB, Liu HY. Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas involved in pathogenesis of radioresistance. CNS Neurosci Ther. 2012;18(9):729–36.  https://doi.org/10.1111/j.1755-5949.2012.00353.x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zheng LT, Lee S, Yin GN, Mori K, Suk K. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J Neurochem. 2009;111(5):1238–51.  https://doi.org/10.1111/j.1471-4159.2009.06410.x.CrossRefPubMedGoogle Scholar
  45. Zhou Z, Luther N, Ibrahim GM, Hawkins C, Vibhakar R, Handler MH, Souweidane MM. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. J Neuro-Oncol. 2013;111(3):257–64.  https://doi.org/10.1007/s11060-012-1021-2.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jianqiang Wu
    • 1
  • Yanying Ni
    • 2
  1. 1.Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of PathologyAviation General Hospital of China Medical UniversityBeijingChina

Personalised recommendations