Skip to main content

Teaching Green Analytical Chemistry on the Example of Bioindication and Biomonitoring (B & B) Technologies

  • Chapter
  • First Online:
Green Analytical Chemistry

Abstract

Teaching of Green Analytical Chemistry (GAC) requires a not inconsiderable willingness on the part of the lecturer to familiarize himself with a relatively new field in analytical chemistry. Although there is much that can be derived from Green and Sustainable Chemistry, the GAC’s forward-looking perspectives in particular are independent approaches that must not be neglected. In the first chapter of this article, approaches are pursued “how (teachers) learn to learn,” ultimately based on a consensus on ethics, which allows dealing with people, society and the environment to become an interdisciplinary unit. The end of all this is a smart method of conflict management which provides solutions of problems. Available tools include

  • Regions concerned with education (learn how to learn)

  • Think tanks (to define integrative solutions for problems) and

  • Turbodemogracy (to get faster results)

In the second part of the chapter, GAC and nature merge completely, in which mechanical sample collectors are replaced by mosses within the framework of bioindication and biomonitoring (B & B) technologies during atmospheric deposition measurement of chemical elements. Definitions of bioindicators and biomonitors, active and passive B & B technologies and interdisciplinary connections between bioindicative sampling and scientific interpretations of natural systems are given. Mosses are distinguished by a rather large resistance toward enhanced levels of various anthropogenic air pollutions permitting their use also in polluted areas.

This book chapter is dedicated to our colleagues Dr. Rebecca R. Sharitz and Dr. Jean-Paul Schwitzguébel who passed away in 2018. Rebecca Sharitz worked at the University of Georgia in Aiken, SC, USA, where she mainly researched highest successful on ecological processes in wetlands. For many years, Becky has been working very effectively in our International Association for Ecology (INTECOL). She was the very first woman to work with INTECOL over such a long period of time to put her scientific interests into practice together with her friends and colleagues, but fought fairly and serenely for equal rights for women in the environmental and natural sciences.

Jean-Paul Schwitzguébel worked successfully at the Swiss Federal Institute of Technology in Lausanne, Switzerland, especially in the context of his phytotechnological studies. Particularly, noteworthy is his extraordinary ability in the framework of different European Cooperations in Science and Technology (EU-COST) over many years to bring together scientifically and practically different European and global schools of thought. Jean-Paul had as a francophile Swiss a heart and a feeling for all kinds of “everyday” problems, which we as scientists, whether young or old, private or professional have to deal with. Many young scientists owe it personally to him that they have found their successful way into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the German original: “soziale Demokratie”. This term does refer/allude to “soziale Marktwirtschaft,” the concept put forward by later Federal chancellor Ludwig Erhard (1897–1977), sometimes also dubbed “the Rhineland way of doing capitalism” rather than, for example, “Archiv der sozialen Demokratie” which is the central part of the party archives of the German Social Democratic Party (SPD). Anyway, in Germany the link between democracy/federal structuring of state and social norms is part of the constitution and even officially protected against any change (Grundgesetz articles 20, 79, 116).

  2. 2.

    In Germany, this really became a popular term: “bildungsferne Schichten” (people who live in utmost avoidance of education). The Programme for International Student Assessment (PISA) studies revealed Germany to be the one country in the developed world where educational and thereafter occupational chances depend mostly on the educational status (and income levels) of the parents, more so than even in many developing countries. So a vicious circle can be established (parental poverty precludes education of the children to a level now required even to obtain a reasonable apprenticeship position) which is avoided only by more active measures pointing to the corresponding milieus and urban neighbourhoods.

  3. 3.

    In original German: Volkshochschule. These are public institutions which have their part in advanced (not apprentice) professional education, besides universities and universities of applied sciences. There are also courses in computer skills or various modern languages. Some certification of courses at Volkshochschule can actually be used in a profession, unlike a university; an Abitur (school-leaving examination) is not required to attend.

References

  1. Anastas P, Kirchhoff M (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  2. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301

    Article  CAS  Google Scholar 

  3. Androas J, Dicks A (2012) Green chemistry teaching n higher education: a review of effective practices? Chem Educ Res Pract 13:69–79

    Article  Google Scholar 

  4. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27(6):497–511

    Article  CAS  Google Scholar 

  5. Galuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal Chem V 50:78–84

    Article  CAS  Google Scholar 

  6. Gron L (2009) Green analytical chemistry: application and education. American Chemical Society

    Google Scholar 

  7. Guardia M, Garrigues S (eds) (2012) Handbook of green analytical chemistry. Wiley

    Google Scholar 

  8. Koel M, Kaljurand M (2010) Green analytical chemistry. RSC Publishing

    Google Scholar 

  9. Koel M (2016) Do we need green analytical chemistry? Royal Soc Chem 18:923–931

    CAS  Google Scholar 

  10. Lahiri S (2018) Alternatives of synthetic chemicals-chemicals driven from foods and related materials. Acta Agraria Debreceniensis 150, University of Debrecen, Hungary, p 291

    Google Scholar 

  11. Lahiri S, Choudhury D, Sen K (2018) Radio-green chemistry and nature resourced radiochemistry. J Radioanal Nucl Chem 318:1543–1558

    Article  CAS  Google Scholar 

  12. Płotka-Wasylka J, Kurowska-Susdorf A, Sajid M, de la Guardia M, Namieśnik J, Tobiszewski M (2018) Green chemistry in higher education: state of the art, challenges and future trends. Chemsuschem 11:2845–2858. https://doi.org/10.1002/cssc.201801109

    Article  CAS  PubMed  Google Scholar 

  13. Plotka-Wasylka J, Fabjanowicz M, Namieśnik J (2019) History and milestones of green analytical chemistry. In: Namieśnik J, Plotka-Wasylka J (eds) Green analytical chemistry—past, present and perspectives. Springer, Heidelberg, in preparation

    Google Scholar 

  14. Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8:1063

    Article  CAS  Google Scholar 

  15. BMBF, Bundesministerium für Bildung und Forschung (2001) Bundesprogramm “Lernende Regionen—Förderung von Netzwerken”, Bonn

    Google Scholar 

  16. Haber W (2009) Nachhaltige Entwicklung unter human-ökologischen Perspektiven im globalen Wandel. Erste Hans Carl von Carlowitz-Vorlesung des Rats für Nachhaltige Entwicklung anlässlich seiner 9. Jahreskonferenz am 23. November 2009 in Berlin

    Google Scholar 

  17. Menke-Glückert P (1968) Working paper‚ eco-commandments for world citizens’ presented at UNESCO conference‚ Man and Biosphere, March 9 in 1968, Paris

    Google Scholar 

  18. Zhu YG, Jones KC (2010) Urbanisation and health in China. Lancet 376:232–233

    Article  Google Scholar 

  19. Dahrendorf R (1986) Pfade aus Utopia. Arbeiten zur Theorie und Methode der Soziologie. Piper, Munich

    Google Scholar 

  20. Dahrendorf R (2003) Auf der Suche nach einer neuen Ordnung/Vorlesungen zur Politik der Freiheit im 21. Jahrhundert, Beck, München

    Google Scholar 

  21. Goeudevert D (2000) Mit Träumen beginnt die Realität. Aus dem Leben eines Europäers, Rowohlt, Reinbek

    Google Scholar 

  22. Hosang M, Fränzle S, Markert B (2005) Die emotionale matrix—Grundlagen für gesellschaftlichen Wandel und nachhaltige Innovation. Oekom Verlag, München

    Google Scholar 

  23. Miegel M (2003) Die deformierte Gesellschaft/Wie die Deutschen die Wirklichkeit verdrängen. Ullstein, Berlin

    Google Scholar 

  24. Miegel M (2005) Epochenwende. Gewinnt der Westen die Zukunft? Propyläen Verlag, Berlin

    Google Scholar 

  25. Rosnay DE (2000) Homo symbionticus: Einblicke in das 3. Jahrtausend, Gerling, Akademie Verlag, München

    Google Scholar 

  26. Choe J (2002) A new ethics for the brave new world. In: Choe J, Lieth H (eds) Plenary lectures at the 8th international congress of ecology “ecology in a changing world. Seoul University Press, Seoul, pp 91–94

    Google Scholar 

  27. Rühling A, Tyler G (1968) An ecological approach to the lead problem. Bot Not 121:321–342

    Google Scholar 

  28. Aničić Urošević M, Vuković G, Tomašević M (2017) Biomonitoring of air pollution using mosses and lichens, A passive and active approach, state of the art research and perspectives. Nova Science Publishers, New York, USA. ISBN: 978–1-53610-212-3

    Google Scholar 

  29. Harmens H, G Mills, Hayes F, Sharps K, Frontasyeva M, and the participants of the ICP Vegetation (2016) Air pollution and vegetation: ICP vegetation annual report 2015/2016

    Google Scholar 

  30. Klos A, Rajfur M, Waclawek M, Waclawek W, Wuenschmann S, Markert B (2010) Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health 4(2/3):98–119

    Article  CAS  Google Scholar 

  31. Loppi S, Giomarelli N, Bargagli R (1999) Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, central Italy). Cryptogam, Mycol 20:119–126

    Article  Google Scholar 

  32. Markert B, Oehlmann J, Roth M (1997) Biomonitoring von Schwermetallen – eine kritische Bestandsaufnahme. Z Ökologie u Naturschutz 6:1–8

    Google Scholar 

  33. Markert B, Wünschmann S, Marcovecchio J, De Marco S (2013) Bioindicadores y Biomonitores: Definiciones, Estrategias y Aplicaciones. In: Marcovecchio J, Freije R (eds) Procesos Químicos en Estuarios

    Google Scholar 

  34. Seaward MRD (2006) Biomonitors of environmental pollution: an appraisal of their effectiveness. Ecol Chem Eng 13(3–4):193–199

    Google Scholar 

  35. Smodis B, Pignata ML, Saiki M, Cortes E, Bangfa N, Markert B, Nyarko B, Arunchalan J, Garty J, Vutchkov M, Wolterbeek HT, Steiness E, Freitas NC, Lucaciu A, Frontasyeva (2004) Validation and application of plants as biomonitors of trace athmospheric pollution—a co-ordinated effort in 14 countries. J Atmos Chem 49:3–13

    Article  Google Scholar 

  36. Tabors G, Lapina L (2012) Growth dynamics of the hylocomium splendens moss. In: Nriagu J, Pacyna J, Szefer P, Markert B, Wünschmann S, Namieśnik J (eds) Heavy metals in the environment. Maralte Publisher, Leiden, pp 311–321

    Google Scholar 

  37. Wang M, Chen W, Markert B (2010) Effects of soil quality on fates of chlorimuron-ethyl in agricultural soils. Agrochimica LIV-N4:245–256

    Google Scholar 

  38. Wang M, Markert B, Shen W, Chen W, Peng C, Ouyang Z (2011) Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ Sci Pollut Res 18:958–967

    Article  CAS  Google Scholar 

  39. Wolterbeek B, Sarmento S, Verburg T (2010) Is there a future for biomonitoring of element air pollution? A review focused on a larger-scaled health-related (epidemiological) context. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-010-0637-y

    Article  CAS  Google Scholar 

  40. Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21(S1):77–82

    Article  Google Scholar 

  41. Adriano DC (ed) (1992) Biogeochemistry of trace metals. Lewis, Boca Raton

    Google Scholar 

  42. Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  43. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:86–126

    Google Scholar 

  44. Fränzle S (2010) Chemical elements in plant and soil: parameters controlling essentiality. Task for Vegetation Sciences 45. Springer Heidelberg, 196 pp

    Google Scholar 

  45. Hooda P (ed) (2010) Trace elements in soil. Wiley, New York

    Google Scholar 

  46. Lee JA, Tallis JH (1973) Regional and historical aspects of lead pollution in Britain. Nature 245:216–218

    Article  CAS  Google Scholar 

  47. Lieth H, Markert B (eds) (1990) Element concentration cadasters in ecosystems. Methods of assessment and evaluation VCH Weinheim

    Google Scholar 

  48. Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  Google Scholar 

  49. Markert B, Weckert V (1994) Higher lead concentrations in the environment of former West Germany after fall of the “Berlin Wall”. Sci Total Environ 158:93–96

    Article  CAS  Google Scholar 

  50. Markert B, Fränzle S, Wünschmann S (2015) Chemical evolution & the biological system of the elements. Springer, Heidelberg

    Google Scholar 

  51. Markert B, Wünschmann S, Rinklebe J, Fränzle S, Ammari T (2018) The biological system of the chemical elements (BSCE)—the role of lithium for mental health care. Bioact Compd Health Dis 1(1):1–15

    Article  Google Scholar 

  52. Martinka M, Vaculík M, Lux A (2014) Plant cell responses to cadmium and zinc. In: Nick P, Opatrný Z (eds) Applied plant cell biology: cellular tools and approaches for plant biotechnology. Plant Cell Monographs 22. Springer, pp 209–246

    Google Scholar 

  53. Pacyna J, Pacyna E (eds) (2017) Environmental determinants of human health. Springer International Publishing

    Google Scholar 

  54. Rinklebe J, Du Laing G (2011) Factors controlling the dynamics of trace metals in frequently flooded soils. In: Magdi Selim H (ed) Dynamics and bioavailability of heavy metals in the root zone. CRC Press. Taylor & Francis Group, pp 245–270

    Google Scholar 

  55. Streit B, Stumm W (1993) Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In: Markert B (ed) Plants as biomonitors—indicators for heavy metals in the terrestrial environment. VCH Weinheim

    Google Scholar 

  56. Fränzle O (2003) Bioindicators and environmental stress assessment. In: Markert B, Breure T, Zechmeister H (eds) Bioindicators and biomonitors. Elsevier, pp 41–84

    Google Scholar 

  57. Wünschmann S, Oehlmann J, Delakowitz B, Markert B (2001) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 1. UWSF-Z Umweltchem Ökotox 13(5):259–265

    Google Scholar 

  58. Wünschmann S, Oehlmann J, Delakowitz B, Markert B (2002) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 2. UWSF-Z Umweltchem Ökotox 14(2):96–103

    Article  Google Scholar 

  59. Wünschmann S, Fränzle S, Markert B (2004) Transfer von Elementen in die Muttermilch. Methoden, Modellierungen, Empfehlungen. Ecomed-Medizin Verlagsgesellschaft/Springer, Landsberg

    Google Scholar 

  60. Wünschmann S, Fränzle S, Markert B, Zechmeister H (2008) Input and transfer of trace metals from food via mothermilk to the child—an international study in Middle Europe. In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications. Wiley, pp 555–592

    Google Scholar 

  61. Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace elements, their distribution and effects in the environment. Elsevier, Amsterdam, pp 137–185

    Chapter  Google Scholar 

  62. Markert B (1996) Instrumental element and multielement analysis of plant samples—methods and applications. Wiley, Chichester, New York, Tokyo

    Google Scholar 

  63. Kramer KJM (2006) Quality of data in environmental analysis. Geo-Eco-Marina 11(2005):15–19

    Google Scholar 

  64. Namiesnik J, Szefer P (eds) (2009) Analytical measurements in aquatic environments. CRC Press, Boca Raton

    Google Scholar 

  65. Quevauviller P, Maier E (1999) Certified reference material in interlaboratory studies for environmental analysis—the BCR approach. Elsevier, Amsterdam, p 558

    Google Scholar 

  66. Quevauviller P, Balabanis P, Fragakis C, Weydert M, Oliver M, Kaschl A, Arnold G, Kroll A, Galbiati L, Zaldivar JM, Bidoglio G (2005) Science-policy integration needs in support of the implementation of the EU water framework directive. Environ Sci Policy 203–211

    Article  Google Scholar 

  67. Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses. Toxicol Environ Chem 40:43–56

    Article  CAS  Google Scholar 

  68. Berg T, Røyset O, Steinnes E (1995) Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos Environ 29(3):353–360

    Article  CAS  Google Scholar 

  69. Wappelhorst O (1999) Charakterisierung atmosphärischer Depositionen in der Euroregion Neiße durch ein terrestrisches Biomonitoring. Dissertation, Internationales Hochschulinstitut Zittau, 189 pp

    Google Scholar 

  70. Wappelhorst O, Kühn I, Oehlmann J, Markert B (2000) Deposition and disease: a moss monitoring project as an approach to ascertaining potential connections. Sci Total Environ 249:243–256

    Article  CAS  Google Scholar 

  71. Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    Article  CAS  Google Scholar 

  72. Markert B (2003) Was kostet ein Pfund Ehrlichkeit? In: Markert B, Konschak R (eds) Mögliche Wege zu einem gesellschaftsfähigen Ethik - Konsens – Was können Hochschulen leisten? Peter Lang Verlag, Frankfurt/Main, pp 167–197

    Google Scholar 

  73. Herpin U, Berlekamp J, Markert B, Wolterbeek B, Grodzinska K, Siewers U, Lieth H, Weckert V (1996) The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring. Sci Total Environ 187:185–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A lot of international colleagues have supported us during decades of years through the field of information transfer by communication, scientific support and promotion of ideas. We would like to mention only some as Martin Broadley (Nottingham, UK), Alan Covich (Athens, USA), John Grace (Edinburgh, UK), Gene Turner (Louisiana, USA), Charlotte Poschenrieder (Barcelona, Spain), Stefan Trapp (Kongens Lyngby, Denmark) for supporting this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markert, B. et al. (2019). Teaching Green Analytical Chemistry on the Example of Bioindication and Biomonitoring (B & B) Technologies. In: Płotka-Wasylka, J., Namieśnik, J. (eds) Green Analytical Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9105-7_2

Download citation

Publish with us

Policies and ethics