Automated Detection of Seizure and Nonseizure EEG Signals Using Two Band Biorthogonal Wavelet Filter Banks

  • Dinesh BhatiEmail author
  • Ram Bilas Pachori
  • Manish Sharma
  • Vikram M. Gadre
Part of the Series in BioEngineering book series (SERBIOENG)


The automated feature identification and classification of nonseizure and seizure electroencephalogram (EEG) is very useful for the diagnosis of epilepsy. In this chapter two band biorthogonal wavelet filter banks are used for classification of nonseizure and seizure EEG signals, and their classification accuracy has been evaluated. The energy or the bispectral phase entropies of the wavelet subbands can be used to discriminate nonseizure and seizure EEG signals. We compare the performance of energy measure and the bispectral phase entropies to discriminate EEG signals. We compare the classification accuracy of thirty biorthogonal filter banks with respect to the regularity orders of the synthesis and analysis of low pass filters and the number of wavelet decompositions. It is found that the energy measure performs better than the bispectral phase entropy for the cases for which the regularity order is greater than or equal to five independent of the wavelet decomposition level. For the fifth and sixth levels of wavelet decomposition, it is found that the energy measure always performed better than the bispectral phase entropy measure independent of the regularity of the filter bank. For the energy measure, the filter banks with higher regularity orders are found to perform better than the filter banks with lower regularity orders at almost all the decomposition levels. However, for the bispectral phase entropy measure, the filter banks with lower regularity orders are found to perform better than the filter banks with higher regularity orders for most of the decomposition levels. The highest classification accuracies obtained from the bispectral phase entropies and the energy measure is \(96.4\%\) and \(98.2\%\) respectively.


  1. 1.
    Mamun, M., Al-Kadi, M., Marufuzzaman, M.: Effectiveness of wavelet denoising on electroencephalogram signals. J. Appl. Res. Technol. 11(1), 156–160 (2013)CrossRefGoogle Scholar
  2. 2.
    Sriraam, N.: A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors. Int. J. Telemed. Appl. 2012 (2012) Article ID 302581CrossRefGoogle Scholar
  3. 3.
    Acharya, U.R., Sree, S.V., Swapna, G., Martis, R.J., Suri, J.S.: Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 45, 147–165 (2013)CrossRefGoogle Scholar
  4. 4.
    Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S.: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 22(02), 1250002 (2012)CrossRefGoogle Scholar
  5. 5.
    Bozhokin, S., Suslova, I.: Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method. Biomed. Signal Process. Control 10, 34–40 (2014)CrossRefGoogle Scholar
  6. 6.
    Sharma, R., Pachori, R.B., Acharya, U.R.: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17(2), 669–691 (2015)CrossRefGoogle Scholar
  7. 7.
    Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2012)CrossRefGoogle Scholar
  8. 8.
    Tiwari, A., Pachori, R.B., Kanhangad, V., Panigrahi, B.: Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J. Biomed, Health Inf. (2016)Google Scholar
  9. 9.
    Pachori, R.B., Patidar, S.: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Programs Biomed. 113(2), 494–502 (2014)CrossRefGoogle Scholar
  10. 10.
    Joshi, V., Pachori, R.B., Vijesh, A.: Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014)CrossRefGoogle Scholar
  11. 11.
    Kumar, M., Pachori, R.B., Acharya, U.R.: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. Control 31, 301–308 (2017)CrossRefGoogle Scholar
  12. 12.
    Karaaslan, O.F., Bilgin, G.: ECG classification with emprical mode decomposition denoised by wavelet transform. In: 22nd Signal Processing and Communications Applications Conference, pp. 694–697, Trabzon, Turkey (2014)Google Scholar
  13. 13.
    Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64, 2003–2015 (2017)CrossRefGoogle Scholar
  14. 14.
    Bhattacharyya, A., Pachori, R.B., Upadhyay, A., Acharya, U.R.: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl. Sci. 7(4) (2017)CrossRefGoogle Scholar
  15. 15.
    Sharma, R., Pachori, R.B.: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42(3), 1106–1117 (2015)CrossRefGoogle Scholar
  16. 16.
    Kumar, T.S., Kanhangad, V., Pachori, R.B.: Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed. Signal Process. Control 15, 33–40 (2015)CrossRefGoogle Scholar
  17. 17.
    Bajaj, V., Pachori, R.B.: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed. Eng. Lett. 3, 17–21 (2013)CrossRefGoogle Scholar
  18. 18.
    Pachori, R.B., Bajaj, V.: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 104(3), 373–381 (2011)CrossRefGoogle Scholar
  19. 19.
    Pachori, R.B., Sharma, R., Patidar, S.: Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition, pp. 367–388. Springer International Publishing, Cham (2015)Google Scholar
  20. 20.
    Tzallas, A.T., Tsalikakis, D.G., Karvounis, E.C., Astrakas, L., Tzaphlidou, M., Tsipouras, M.G., Konitsiotis, S.: Automated epileptic seizure detection methods: a review study. INTECH Open Access Publisher (2012)Google Scholar
  21. 21.
    Alotaiby, T.N., Alshebeili, S.A., Alshawi, T., Ahmad, I., El-Samie, F.E.A.: EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process. 2014(1), 1–21 (2014)CrossRefGoogle Scholar
  22. 22.
    Sharma, M., Pachori, R.B.: A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension. J. Mech. Med. Biol. 17(07), 1740003 (2017)CrossRefGoogle Scholar
  23. 23.
    Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 2008, 1–5 (2008) Article ID 293056CrossRefGoogle Scholar
  24. 24.
    Alam, S.S., TarekShahriar, S.: EEG signal discrimination using non-linear dynamics in the EMD domain. Int. J. Comput. Electr. Eng. 4(3), 326 (2012)CrossRefGoogle Scholar
  25. 25.
    Ebrahimpour, R., Babakhani, K., Asghar Abbaszadeh Arani, S.A., Masoudnia, S.: Epileptic seizure detection using a neural network ensemble method and wavelet transform. Neural Netw. World 22(3), 291 (2012)CrossRefGoogle Scholar
  26. 26.
    Abualsaud, K., Mahmuddin, M., Saleh, M., Mohamed, A.: Ensemble classifier for epileptic seizure detection for imperfect EEG data. Sci, World J (2015)CrossRefGoogle Scholar
  27. 27.
    Tzallas, A., Tsipouras, M., Fotiadis, D.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. (2007) Article ID 80510Google Scholar
  28. 28.
    Gajic, D., Gligorijevic, J., Djurovic, Z., Di Gennaro, S., Savic-Gajic, I.: Detection of epileptiform activity in EEG signals based on time-frequency and nonlinear analysis. Front. Comput. Neurosci. 9, 38 (2015)CrossRefGoogle Scholar
  29. 29.
    Sharma, R.R., Pachori, R.B.: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12(1), 72–82 (2018)CrossRefGoogle Scholar
  30. 30.
    Vanrumste, B., Jones, R., Bones, P.: Detection of focal epileptiform activity in the EEG: an SVD and dipole model approach. Proc. Eng. Med. Biol. 3, 2031–2032 (2002)Google Scholar
  31. 31.
    Shahid, A., Kamel, N., Malik, A., Jatoi, M.: Epileptic seizure detection using the singular values of EEG signals. In: International Conference on Complex Medical Engineering, Beijing, China, pp. 652–655, May 2013Google Scholar
  32. 32.
    Parvinnia, E., Sabeti, M., Jahromi, M.Z., Boostani, R.: Classification of EEG signals using adaptive weighted distance nearest neighbor algorithm. J. King Saud Univ. Comput. Inf. Sci. 26(1), 1–6 (2014)CrossRefGoogle Scholar
  33. 33.
    Yol, S., Ozdemir, M.A., Akan, A., Chaparro, L.F.: Detection of epileptic seizures by the analysis of EEG signals using empirical mode decomposition. In: 2018 Medical Technologies National Congress (TIPTEKNO), pp. 1–4, Nov 2018Google Scholar
  34. 34.
    Iftikhar, M., Khan, S.A., Hassan, A.: A survey of deep learning and traditional approaches for EEG signal processing and classification. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 395–400. IEEE (2018)Google Scholar
  35. 35.
    Chakole, A.R., Barekar, P.V., Ambulkar, R.V., Kamble, S.D.: Review of EEG signal classification. In: Information and Communication Technology for Intelligent Systems, pp. 105–114. Springer (2019)Google Scholar
  36. 36.
    Subasi, A., Ahmed, A., Alickovic, E., Hassan, A.R.: Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform. Biomed. Signal Process. Control 49, 231–239 (2019)CrossRefGoogle Scholar
  37. 37.
    Lu, Y., Ma, Y., Chen, C., Wang, Y.: Classification of single-channel EEG signals for epileptic seizures detection based on hybrid features. Technol. Health Care 1–10 (2018)Google Scholar
  38. 38.
    Datta, A., Chatterjee, R.: Comparative study of different ensemble compositions in EEG signal classification problem. In: Emerging Technologies in Data Mining and Information Security, pp. 145–154. Springer (2019)Google Scholar
  39. 39.
    Chakladar, D.D., Chakraborty, S.: Feature extraction and classification in brain-computer interfacing: future research issues and challenges. In: Natural Computing for Unsupervised Learning, pp. 101–131. Springer (2019)Google Scholar
  40. 40.
    Fasil, O., Rajesh, R.: Time-domain exponential energy for epileptic EEG signal classification. Neurosci. Lett. 694, 1–8 (2019)CrossRefGoogle Scholar
  41. 41.
    Bhattacharyya, A., Singh, L., Pachori, R.B.: Fourier bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digital Signal Process. 78, 185–196 (2018)CrossRefGoogle Scholar
  42. 42.
    Bhati, D., Pachori, R.B., Gadre, V.M.: A novel approach for time frequency localization of scaling functions and design of three-band biorthogonal linear phase wavelet filter banks. Digital Signal Process. 69, 309–322 (2017)CrossRefGoogle Scholar
  43. 43.
    Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the \(K\)-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)CrossRefGoogle Scholar
  44. 44.
    Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193(1), 156–163 (2010)CrossRefGoogle Scholar
  45. 45.
    Ubeyli, E.D.: Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process. 19(2), 297–308 (2009)CrossRefGoogle Scholar
  46. 46.
    Ubeyli, E.D., Cvetkovic, D., Cosic, I.: Analysis of human PPG, ECG and EEG signals by eigenvector methods. Digital Signal Process. 20(3), 956–963 (2010)CrossRefGoogle Scholar
  47. 47.
    Bhati, D., Sharma, M., Pachori, R.B., Gadre, V.M.: Time-frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digital Signal Process. 62, 259–273 (2017)CrossRefGoogle Scholar
  48. 48.
    Sharma, M., Pachori, R.B., Acharya, U.R.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recogn. Lett (2017)Google Scholar
  49. 49.
    Patidar, S., Pachori, R.B., Upadhyay, A., Acharya, U.R.: An integrated alcoholic index using tunable-q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl. Soft Comput. 50, 71–78 (2017)CrossRefGoogle Scholar
  50. 50.
    Gandhi, T., Panigrahi, B.K., Anand, S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17), 3051–3057 (2011)CrossRefGoogle Scholar
  51. 51.
    Acharya, U.R., Sree, S.V., Suri, J.S.: Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 21(05), 403–414 (2011)CrossRefGoogle Scholar
  52. 52.
    Seijas, C., Caralli, A., Villazana, S.: Neuropathology classifier based on higher order spectra. J. Comput. Commun. 2013 (2013)Google Scholar
  53. 53.
    Vetterli, M., Herley, C.: Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 40(9), 2207–2232 (1992)zbMATHCrossRefGoogle Scholar
  54. 54.
    Bhati, D.: Design of time-frequency localized three-band wavelet filter banks and applications in EEG signal analysis. Ph.D. Thesis, Indian Institute of Technology Bombay, Mumbai, India (2017)Google Scholar
  55. 55.
    Pachori, R.B., Sircar, P.: EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process. 88(2), 415–420 (2008)zbMATHCrossRefGoogle Scholar
  56. 56.
    Yegnanarayana, B.: Artificial Neural Networks. Prentice-Hall of India Pvt. Ltd. (2004)Google Scholar
  57. 57.
    Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)CrossRefGoogle Scholar
  58. 58.
    Sharma, R., Pachori, R.B., Acharya, U.R.: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17(8), 5218–5240 (2015)CrossRefGoogle Scholar
  59. 59.
    Andrew, A.M.: An introduction to support vector machines and other kernel-based learning methods by Nello Christianini and John Shawe-Taylor. Cambridge University Press (2000)Google Scholar
  60. 60.
    Boneau, C.A.: The effects of violations of assumptions underlying the t test. Psychol. Bull. 57(1), 49 (1960)CrossRefGoogle Scholar
  61. 61.
    Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181 (2001)CrossRefGoogle Scholar
  62. 62.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (2000)Google Scholar
  63. 63.
    Lee, S.-H., Lim, J.S., Kim, J.-K., Yang, J., Lee, Y.: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and euclidean distance. Comput. Methods Programs Biomed. 116(1), 10–25 (2014)CrossRefGoogle Scholar
  64. 64.
    Guo, L., Rivero, D., Dorado, J., Rabual, J.R., Pazos, A.: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 191(1), 101–109 (2010)CrossRefGoogle Scholar
  65. 65.
    Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012)CrossRefGoogle Scholar
  66. 66.
    Samiee, K., Kovacs, P., Gabbouj, M.: Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform. IEEE Trans. Biomed. Eng. 62(2), 541–552 (2015)CrossRefGoogle Scholar
  67. 67.
    Swami, P., Gandhi, T.K., Panigrahi, B.K., Tripathi, M., Anand, S.: A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dinesh Bhati
    • 1
    Email author
  • Ram Bilas Pachori
    • 2
  • Manish Sharma
    • 3
  • Vikram M. Gadre
    • 4
  1. 1.Department of Electronics and Communication EngineeringAcropolis Institute of Technology and ResearchIndoreIndia
  2. 2.Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia
  3. 3.Department of Electrical EngineeringInstitute of Infrastructure Technology Research and Management AhmedabadAhmedabadIndia
  4. 4.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations