Advertisement

Force Myography and Its Application to Human Locomotion

  • Anoop Kant Godiyal
  • Vinay Verma
  • Nitin Khanna
  • Deepak JoshiEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

Locomotion is a highly skillful task that we humans perform using our two limbs to commute from one place to another.

Notes

Acknowledgements

Deepak Joshi would like to thank the Department of Science and Technology, Government of India for funding the present work through Early Career Research Award (ECR/2016/001282), and would also like to thank Indian Council of Medical Research (ICMR) for supporting the work via grant number 5/20/13/Bio/2011-NCD-1.

Nitin Khanna would like to thank the Indian Institute of Technology Gandhinagar as this material is based upon work partially supported by internal research grant IP/IITGN/EE/NK/201516-06.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies. Address all correspondence to Deepak Joshi at joshid@iitd.ac.in.

References

  1. 1.
    Afzal, T., Iqbal, K., White, G., Wright, A.B.: A method for locomotion mode identification using muscle synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 608–617 (2017).  https://doi.org/10.1109/TNSRE.2016.2585962CrossRefGoogle Scholar
  2. 2.
    Asbeck, A.T., Schmidt, K., Galiana, I., Wagner, D., Walsh, C.J.: Multi-joint soft exosuit for gait assistance. In: IEEE International Conference pn Robotics and Automation, pp. 6197–6204Google Scholar
  3. 3.
    Au, S.K., Weber, J., Herr, H.: Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans. Rob. 25(1), 51–66 (2009).  https://doi.org/10.1109/TRO.2008.2008747CrossRefGoogle Scholar
  4. 4.
    Aung, M.S.H., Thies, S.B., Kenney, L.P.J., Howard, D., Selles, R., Findlow, A.H., Goulermas, J.Y.: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 908–916 (2013)CrossRefGoogle Scholar
  5. 5.
    Castellini, C., Artemiadis, P., Wininger, M., Ajoudani, A., Alimusaj, M., Bicchi, A., Caputo, B., et al.: Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front. Neurorobot. 8(AUG), 1–17 (2014).  https://doi.org/10.3389/fnbot.2014.00022
  6. 6.
    Castellini, C., Ravindra, V.: A wearable low-cost device based upon force-sensing resistors to detect single-finger forces. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 199–203 (2014).  https://doi.org/10.1109/BIOROB.2014.6913776
  7. 7.
    Chan, C.W., Rudins, A.: Foot biomechanics during walking and running. Mayo Clin. Proc. 69(5), 448–461 (1994).  https://doi.org/10.1016/S0025-6196(12)61642-5CrossRefGoogle Scholar
  8. 8.
    Chang, Y.H., Huang, H.W., Hamerski, C.M., Kram, R., McN, A.R., Jayes, A.S., Biewener, A.A., et al.: The independent effects of gravity and inertia on running mechanics. J. Exp. Biol. 203(Pt 2), 229–238 (2000).  https://doi.org/10.1016/0021-9290(80)90019-6CrossRefGoogle Scholar
  9. 9.
    Chen, B., Zheng, E., Fan, X., Liang, T., Wang, Q., Wei, K., Wang, L.: Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 744–755 (2013).  https://doi.org/10.1109/TNSRE.2013.2262952CrossRefGoogle Scholar
  10. 10.
    Chen, B., Zheng, E., Wang, Q.: A locomotion intent prediction system based on multi-sensor fusion. Sensors (Switzerland) 14(7), 12349–12369 (2014).  https://doi.org/10.3390/s140712349CrossRefGoogle Scholar
  11. 11.
    Cho, E., Chen, R., Merhi, L.-K., Xiao, Z., Pousett, B., Menon, C.: Force myography to control robotic upper extremity prostheses: a feasibility study. Front. Bioeng. Biotechnol. 4(March), 1–12 (2016).  https://doi.org/10.3389/fbioe.2016.00018CrossRefGoogle Scholar
  12. 12.
    Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K., Chang, T.: Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431–12466 (2013).  https://doi.org/10.3390/s130912431CrossRefGoogle Scholar
  13. 13.
    Connan, M., Ruiz Ramírez, E., Vodermayer, B., Castellini, C.: Assessment of a wearable force and electromyography device and comparison of the related signals for myocontrol. Front. Neurorob. 10(NOV), 1–13 (2016).  https://doi.org/10.3389/fnbot.2016.00017
  14. 14.
    Englehart, K., Scheme, E.: A proportional control scheme for high density force myography. J. Neural Eng. 15(4) (2018).  https://doi.org/10.1088/1741-2552/aac89bCrossRefGoogle Scholar
  15. 15.
    Erni, T., Colombo, G.: Locomotor training in paraplegic patients: a new approach to assess changes in leg muscle EMG patterns. Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control 109(2), 135–39 (1998).  https://doi.org/10.1016/S0924-980X(98)00005-8CrossRefGoogle Scholar
  16. 16.
    Godiyal, A.K., Mondal, M., Joshi, S.D., Joshi, D.: Force myography based novel strategy for locomotion classification. IEEE Trans. Hum. Mach. Syst. 48(6), 648–657 (2018).  https://doi.org/10.1109/THMS.2018.2860598CrossRefGoogle Scholar
  17. 17.
    Godiyal, A.K., Verma, H.K., Khanna, N., Joshi, D.: A force myography-based system for gait event detection in overground and ramp walking. IEEE Trans. Instrum. Meas. 67(10), 2314–2323 (2018).  https://doi.org/10.1109/TIM.2018.2816799CrossRefGoogle Scholar
  18. 18.
    Goršič, M., Kamnik, R., Ambrožič, L., Vitiello, N., Lefeber, D., Pasquini, G., Munih, M.: Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors (Switzerland) 14(2), 2776–2794 (2014).  https://doi.org/10.3390/s140202776CrossRefGoogle Scholar
  19. 19.
    Gottschall, J.S., Nichols, T.R.: Neuromuscular strategies for the transitions between level and hill surfaces during walking. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366(1570), 1565–1579 (2011).  https://doi.org/10.1098/rstb.2010.0355CrossRefGoogle Scholar
  20. 20.
    Gupta, R., Agarwal, R.: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control. Arab. J. Sci. Eng. 43(12), 7817–7835 (2018).  https://doi.org/10.1007/s13369-018-3193-3CrossRefGoogle Scholar
  21. 21.
    Ha, K.H., Varol, H.A., Goldfarb, M.: Volitional control of a prosthetic knee using surface electromyography. IEEE Trans. Bio-Med. Eng. 58(1), 144–151 (2011).  https://doi.org/10.1109/TBME.2010.2070840CrossRefGoogle Scholar
  22. 22.
    Huang, H., Kuiken, T.A., Lipschutz, R.D.: A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Bio-Med. Eng. 56(1), 65–73 (2009).  https://doi.org/10.1109/TBME.2008.2003293CrossRefGoogle Scholar
  23. 23.
    Hwang, S., Lee, H.M., Cherng, R.J., Chen, J.J.J.: Electromyographic analysis of locomotion for healthy and hemiparetic subjects—study of performance variability and rail effect on treadmill. Gait Posture 18(1), 1–12 (2003).  https://doi.org/10.1016/S0966-6362(02)00071-1CrossRefGoogle Scholar
  24. 24.
    Jasiewicz, J.M., Allum, J.H.J., Middleton, J.W., Barriskill, A., Condie, P., Purcell, B., Li, R.C.T.: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4), 502–509 (2006).  https://doi.org/10.1016/j.gaitpost.2005.12.017CrossRefGoogle Scholar
  25. 25.
    Jiang, X., Chu, Kelvin H.T., Khoshnam, M., Menon, C.: A wearable gait phase detection system based on force myography techniques. Sensors (Switzerland) 18(4), 1279 (2018).  https://doi.org/10.3390/s18041279CrossRefGoogle Scholar
  26. 26.
    Jiang, X., Merhi, L.K., Menon, C.: Force exertion affects grasp classification using force myography. IEEE Trans. Hum. Mach. Syst. 48(2), 219–226 (2018).  https://doi.org/10.1109/THMS.2017.2693245CrossRefGoogle Scholar
  27. 27.
    Jiang, X., Merhi, L.K., Xiao, Z.G., Menon, C.: Exploration of force myography and surface electromyography in hand gesture classification. Med. Eng. Phys. 41, 63–73 (2017).  https://doi.org/10.1016/j.medengphy.2017.01.015CrossRefGoogle Scholar
  28. 28.
    Joshi, D., Mishra, A., Anand, S.: ANFIS based knee angle prediction: an approach to design speed adaptive contra lateral controlled AK prosthesis. Appl. Soft Comput. 11(8), 4757–4765 (2011).  https://doi.org/10.1016/j.asoc.2011.07.007CrossRefGoogle Scholar
  29. 29.
    Joshi, D., Nakamura, B.H., Hahn, M.E.: High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification. Med. Eng. Phys. 37(5), 518–524 (2015).  https://doi.org/10.1016/j.medengphy.2015.03.001CrossRefGoogle Scholar
  30. 30.
    Joshi, D., Nakamura, B.H., Hahn, M.E.: A novel approach for toe off estimation during locomotion and transitions on ramps and level ground. IEEE J. Biomed. Health Inform. 20(1), 153–157 (2016).  https://doi.org/10.1109/JBHI.2014.2377749CrossRefGoogle Scholar
  31. 31.
    Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19(2), 456–466 (2014).  https://doi.org/10.1109/TMECH.2013.2240312CrossRefGoogle Scholar
  32. 32.
    Jung, J.Y., Heo, W., Yang, H., Park, H.: A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors (Switzerland) 15(11), 27738–27759 (2015).  https://doi.org/10.3390/s151127738CrossRefGoogle Scholar
  33. 33.
    Khandelwal, S., Wickstrom, N.: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1363–1372 (2016).  https://doi.org/10.1109/TNSRE.2016.2536278CrossRefGoogle Scholar
  34. 34.
    Kim, D., Hilliges, O., Izadi, S., Butler, A.D., Chen, J., Oikonomidis, I., Olivier, P.: Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and TechnologyUIST’12, p. 167 (2012).  https://doi.org/10.1145/2380116.2380139
  35. 35.
    Kimmeskamp, S., Hennig, E.M.: Heel to toe motion characteristics in parkinson patients during free walking. Clin. Biomech. 16(9), 806–812 (2001).  https://doi.org/10.1016/S0268-0033(01)00069-9CrossRefGoogle Scholar
  36. 36.
    Kotiadis, D., Hermens, H.J., Veltink, P.H.: Inertial gait phase detection for control of a drop foot stimulator inertial sensing for gait phase detection. Med. Eng. Phys. 32(4), 287–297 (2010).  https://doi.org/10.1016/j.medengphy.2009.10.014CrossRefGoogle Scholar
  37. 37.
    Lawson, B.E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., Goldfarb, M.: A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21(4), 70–81 (2014).  https://doi.org/10.1109/MRA.2014.2360303CrossRefGoogle Scholar
  38. 38.
    Leighton, R.D.: A functional model to describe the action of the adductor muscles at the hip in the transverse plane. Physiother. Theory Pract. 22(5), 251–262 (2006).  https://doi.org/10.1080/09593980600927385CrossRefGoogle Scholar
  39. 39.
    Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., et al.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015).  https://doi.org/10.1109/TOH.2015.2417570CrossRefGoogle Scholar
  40. 40.
    Li, N., Yang, D., Jiang, L., Liu, H., Cai, H.: Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. J. Bionic Eng. 9(1), 39–47 (2012).  https://doi.org/10.1016/S1672-6529(11)60095-4CrossRefGoogle Scholar
  41. 41.
    Liu, Z., Lin, W., Geng, Y., Yang, P.: Intent pattern recognition of lower-limb motion based on mechanical sensors. IEEE/CAA J. Autom. Sinica 4(4), 651–660 (2017).  https://doi.org/10.1109/JAS.2017.7510619CrossRefGoogle Scholar
  42. 42.
    Mannini, A., Genovese, V., Sabatini, A.M., Member, S.: Online decoding of hidden markov models for gait event detection using foot-mounted gyroscopes. IEEE J. Biomed. Health Inform. 18(4), 1122–1130 (2014)CrossRefGoogle Scholar
  43. 43.
    Maqbool, H.F., Husman, M.A.B., Awad, M.I., Abouhossein, A., Iqbal, N.: A real-time gait event detection for lower limb prosthesis control and evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 1500–1509 (2017)CrossRefGoogle Scholar
  44. 44.
    Martinez-villalpando, E.C., Herr, H.: Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking 46(3), 361–373 (2009).  https://doi.org/10.1682/JRRD.2008.09.0131
  45. 45.
    Mo, S., Chow, D.H.K.: Accuracy of three methods in gait event detection during overground running. Gait Posture 59 (October 2017), 93–98 (2018).  https://doi.org/10.1016/j.gaitpost.2017.10.009CrossRefGoogle Scholar
  46. 46.
    Novak, D., Reberšek, P., Rossi, S.M.M.D., Donati, M., Podobnik, J., Beravs, T., Lenzi, T., Vitiello, N., Carrozza, M.C., Munih, M.: Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 35(12), 1713–1720 (2013).  https://doi.org/10.1016/j.medengphy.2013.07.003CrossRefGoogle Scholar
  47. 47.
    Paisey, R.B., Abbott, A., Levenson, R., Harrington, A., Browne, D., Moore, J., Bamford, M., Roe, M.: Diabetes-related major lower limb amputation incidence is strongly related to diabetic foot service provision and improves with enhancement of services: peer review of the south-west of england. Diabet. Med. 35(1), 53–62 (2018).  https://doi.org/10.1111/dme.13512CrossRefGoogle Scholar
  48. 48.
    Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073–1083 (2013).  https://doi.org/10.1109/TIM.2012.2236792CrossRefGoogle Scholar
  49. 49.
    Peng, J., Fey, N.P., Kuiken, T.A., Hargrove, L.J.: Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent. J. Biomech. 49(4), 528–536 (2016).  https://doi.org/10.1016/j.jbiomech.2015.12.041CrossRefGoogle Scholar
  50. 50.
    Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2009).  https://doi.org/10.1109/TBME.2008.2006190CrossRefGoogle Scholar
  51. 51.
    Radmand, A., Scheme, E., Englehart, K.: High-density force myography: a possible alternative for upper-limb prosthetic control. J. Rehabil. Res. Dev. 53(4), 443–456 (2016).  https://doi.org/10.1682/JRRD.2015.03.0041CrossRefGoogle Scholar
  52. 52.
    Ramstrand, N., Nilsson, K.A.: A comparison of foot placement strategies of transtibial amputees and able-bodied subjects during stair ambulation. Prosthet. Orthot. Int. 33(4), 348–355 (2009).  https://doi.org/10.3109/03093640903074891CrossRefGoogle Scholar
  53. 53.
    Riener, R., Rabuffetti, M., Frigo, C.: Stair ascent and descent at different inclinations. Gait Posture 15(1), 32–44 (2002).  https://doi.org/10.1016/S0966-6362(01)00162-XCrossRefGoogle Scholar
  54. 54.
    Sabatini, A.M., Martelloni, C., Scapellato, S., Cavallo, F.: Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 52(3), 486–494 (2005)CrossRefGoogle Scholar
  55. 55.
    Sadarangani, G.P., Menon, C.: A preliminary investigation on the utility of temporal features of force myography in the two-class problem of grasp versus no-grasp in the presence of upper-extremity movements. BioMed. Eng. Online 16(1), 1–19 (2017).  https://doi.org/10.1186/s12938-017-0349-4CrossRefGoogle Scholar
  56. 56.
    Sanford, J., Patterson, R., Popa, D.O.: Concurrent surface electromyography and force myography classification during times of prosthetic socket shift and user fatigue. J. Rehabil. Assist. Technol. Eng. 4 (2017).  https://doi.org/10.1177/2055668317708731CrossRefGoogle Scholar
  57. 57.
    Sarasola-Sanz, A., Irastorza-Landa, N., Lopez-Larraz, E., Bibian, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. Int. Conf. Rehabil. Rob. (ICORR) 2017, 895–900 (2017).  https://doi.org/10.1109/ICORR.2017.8009362CrossRefGoogle Scholar
  58. 58.
    Sensinger, J.W., Lock, B.A., Kuiken, T.A.: Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms 12. IEEE Trans. Neural Syst. Rehabil. Eng. 17(3), 270–278 (2009)CrossRefGoogle Scholar
  59. 59.
    Varol, H.A., Sup, F., Goldfarb, M.: Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57(3), 542–551 (2010).  https://doi.org/10.1109/TBME.2009.2034734CrossRefGoogle Scholar
  60. 60.
    Varol, H.A., Sup, F., Goldfarb, M.: Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, pp. 645–651 (2009).  https://doi.org/10.1109/ICORR.2009.5209582
  61. 61.
    Veer, K., Sharma, T.: A novel feature extraction for robust EMG pattern recognition. J. Med. Eng. Technol. 40(4), 149–154 (2016).  https://doi.org/10.3109/03091902.2016.1153739CrossRefGoogle Scholar
  62. 62.
    Wininger, M.: Pressure signature of forearm as predictor of grip force. J. Rehabil. Res. Dev. 45(6), 883–892 (2008).  https://doi.org/10.1682/JRRD.2007.11.0187CrossRefGoogle Scholar
  63. 63.
    Xiao, Z.G., Menon, C.: Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities. J. NeuroEng. Rehabil. 11(1), 1–13 (2014).  https://doi.org/10.1186/1743-0003-11-2CrossRefGoogle Scholar
  64. 64.
    Xiao, Z.G., Menon, C.: Performance of forearm FMG and SEMG for estimating elbow, forearm and wrist positions. J. Bionic Eng. 14(2), 284–295 (2017).  https://doi.org/10.1016/S1672-6529(16)60398-0CrossRefGoogle Scholar
  65. 65.
    Young, A.J., Simon, A.M., Hargrove, L.J.: A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 671–677 (2014).  https://doi.org/10.1109/TNSRE.2013.2285101CrossRefGoogle Scholar
  66. 66.
    Zheng, E., Mai, J., Liu, Y., Wang, Q.: Forearm motion recognition with noncontact capacitive sensing. Front. Neurorob. 12(July), 1–13 (2018).  https://doi.org/10.3389/fnbot.2018.00047CrossRefGoogle Scholar
  67. 67.
    Zheng, E., Manca, S., Yan, T., Parri, A., Vitiello, N., Wang, Q.: Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators. IEEE Trans. Biomed. Eng. 99, 1–12 (2017).  https://doi.org/10.1109/TBME.2017.2672720CrossRefGoogle Scholar
  68. 68.
    Zheng, E., Wang, Q.: Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 161–170 (2017).  https://doi.org/10.1109/TNSRE.2016.2529581MathSciNetCrossRefGoogle Scholar
  69. 69.
    Zhou, R., Junsong, Y., Jingjing, M., Zhengyou, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013).  https://doi.org/10.1109/TMM.2013.2246148CrossRefGoogle Scholar
  70. 70.
    Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005–2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anoop Kant Godiyal
    • 1
  • Vinay Verma
    • 2
  • Nitin Khanna
    • 2
  • Deepak Joshi
    • 1
    • 3
    Email author
  1. 1.Centre for Biomedical Engineering, Indian Institute of TechnologyDelhiIndia
  2. 2.Electrical Engineering, Indian Institute of Technology GandhinagarAhmedabadIndia
  3. 3.Department of Biomedical EngineeringAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations