Skip to main content

Estimation of Ankle Joint Torque and Angle Based on S-EMG Signal for Assistive Rehabilitation Robots

  • Chapter
  • First Online:
Biomedical Signal Processing

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Surface Electromyography (S-EMG) has shown the advantages of robotic rehabilitation. Robotic rehabilitation can be significantly improved if the intended body movement of the patients can be well identified. In this chapter, we first use the SVM classifier to identify the intended motion patterns, which are plantarflexion and dorsiflexion, by using three wireless EMG sensors placed at the tibialis anterior, gastrocnemius lateralis and gastrocnemius medialis muscles. To estimate the ankle joint torque as well as the joint angle for both plantarflexion and dorsiflexion, this chapter also develops nonlinear mathematical models for joint torque estimation and utilises Swarm Techniques to identify model parameters for each movement pattern of the ankle. During rehabilitation, once the intended motion is recognised, the activation functions extracted from an individual associated EMG channel can be used to estimate both the torque and angle by using the established nonlinear models. Experimental results demonstrated the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argha, A., Savkin, A., Liaw, S.T., Celler, B.G.: Effect of seasonal variation on clinical outcome in patients with chronic conditions: analysis of the Commonwealth Scientific and Industrial Research Organization (CSIRO) National Telehealth Trial. JMIR Med. Inform. 6(1), e16 (2018). https://doi.org/10.2196/medinform.9680

    Article  Google Scholar 

  2. Baumhauer, J.F., Alosa, D.M., Renstrom, A.F., Trevino, S., Beynnon, B.: A prospective study of ankle injury risk factors. Am. J. Sports Med. 23(5), 564–570 (1995). https://doi.org/10.1177/036354659502300508

    Article  Google Scholar 

  3. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 24–31 (2004). https://doi.org/10.1109/TNSRE.2003.823266

    Article  Google Scholar 

  4. Boian, R.F., Deutsch, J.E., Chan Su, L., Burdea, G.C., Lewis, J.: Haptic effects for virtual reality-based post-stroke rehabilitation. In: Proceedings of 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2003, 22–23 Mar 2003, pp. 247–253 (2003). https://doi.org/10.1109/haptic.2003.1191289

  5. Borst, J., Forbes, P.A., Happee, R., Veeger, D.H.: Muscle parameters for musculoskeletal modelling of the human neck. Clin. Biomech. (Bristol, Avon) 26(4), 343–351 (2011). https://doi.org/10.1016/j.clinbiomech.2010.11.019

    Article  Google Scholar 

  6. Brockett, C.L., Chapman, G.J.: Biomechanics of the ankle. Orthop. Trauma 30(3), 232–238 (2016). https://doi.org/10.1016/j.mporth.2016.04.015

    Article  Google Scholar 

  7. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)

    Article  Google Scholar 

  8. Cholewicki, J., McGill, S.M., Norman, R.W.: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J. Biomech. 28(3), 321–331 (1995). https://doi.org/10.1016/0021-9290(94)00065-c

    Article  Google Scholar 

  9. Côté Allard, U., Nougarou, F., Fall, C.L., Giguere, P., Gosselin, C., Laviolette, F., Gosselin, B.: A convolutional neural network for robotic arm guidance using sEMG based frequency-features (2016). https://doi.org/10.1109/iros.2016.7759384

  10. Coyle, D.: Neural network based auto association and time-series prediction for biosignal processing in brain-computer interfaces. IEEE Comput. Intell. Mag. 4(4), 47–59 (2009). https://doi.org/10.1109/MCI.2009.934560

    Article  Google Scholar 

  11. Fleischer, C., Wege, A., Kondak, K., Hommel, G.: Application of EMG signals for controlling exoskeleton robots. Biomed. Tech. (Berl) 51(5–6), 314–319 (2006). https://doi.org/10.1515/BMT.2006.063

    Article  Google Scholar 

  12. Fong, D.T., Hong, Y., Chan, L.K., Yung, P.S., Chan, K.M.: A systematic review on ankle injury and ankle sprain in sports. Sports Med. 37(1), 73–94 (2007). https://doi.org/10.2165/00007256-200737010-00006

    Article  Google Scholar 

  13. Guimaraes, A.C., Herzog, W., Allinger, T.L., Zhang, Y.T.: The EMG-force relationship of the cat soleus muscle and its association with contractile conditions during locomotion. J. Exp. Biol. 198(4), 975 (1995)

    Google Scholar 

  14. Herzog, W.: History dependence of force production in skeletal muscle: a proposal for mechanisms. J. Electromyogr. Kinesiol. 8(2), 111–117 (1998). https://doi.org/10.1016/s1050-6411(97)00027-8

    Article  MathSciNet  Google Scholar 

  15. Hof, A.L., Van den Berg, J.: EMG to force processing I: an electrical analogue of the hill muscle model. J. Biomech. 14(11), 747–758 (1981). https://doi.org/10.1016/0021-9290(81)90031-2

    Article  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm Optimization, vol. 4 (1995). https://doi.org/10.1109/icnn.1995.488968

  17. Liu, H-J., Young, K.: An Adaptive Upper-Arm EMG-Based Robot Control System, vol. 12 (2010)

    Google Scholar 

  18. Liu, H.-J., Young, K.-Y.: Upper-limb EMG-based robot motion governing using empirical mode decomposition and adaptive neural fuzzy inference system. J. Intell. Robot. Syst. 68(3–4), 275–291 (2012). https://doi.org/10.1007/s10846-012-9677-6

    Article  Google Scholar 

  19. Liu, L., Liu, P., Moyer, D.V., Clancy, E.A.: System identification of non-linear, dynamic EMG-torque relationship about the elbow. In: 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), 1–3 Apr 2011, pp. 1–2 (2011). https://doi.org/10.1109/nebc.2011.5778638

  20. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003). https://doi.org/10.1016/s0021-9290(03)00010-1

    Article  Google Scholar 

  21. Lloyd, D.G., Buchanan, T.S.: A model of load sharing between muscles and soft tissues at the human knee during static tasks. J. Biomech. Eng. 118(3) (1996). https://doi.org/10.1115/1.2796019

    Article  Google Scholar 

  22. Mattacola, C.G., Dwyer, M.K.: Rehabilitation of the ankle after acute sprain or chronic instability. J. Athl. Train. 37(4), 413–429 (2002)

    Google Scholar 

  23. Metral, S., Cassar, G.: Relationship between force and integrated EMG activity during voluntary isometric anisotonic contraction. Eur. J. Appl. Physiol. 46(2), 185–198 (1981). https://doi.org/10.1007/bf00428870

    Article  Google Scholar 

  24. Milner-Brown, H.S., Stein, R.B., Yemm, R.: Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 230(2), 371–390 (1973)

    Article  Google Scholar 

  25. Nam Jo, Y., Jeong Kang, M., Hee Yoo, H.: Estimation of muscle and joint forces in the human lower extremity during rising motion from a seated position. J. Mech. Sci. Technol. 28(2), 467–472 (2014). https://doi.org/10.1007/s12206-013-1111-x

    Article  Google Scholar 

  26. Nowshiravan Rahatabad, F., Jafari, A.H., Fallah, A., Razjouyan, J.: A fuzzy-genetic model for estimating forces from electromyographical activity of antagonistic muscles due to planar lower arm movements: the effect of nonlinear muscle properties. Biosystems 107(1), 56–63 (2012). https://doi.org/10.1016/j.biosystems.2011.09.004

    Article  Google Scholar 

  27. Nurhanim, K., Elamvazuthi, I., Vasant, P., Ganesan, T., Parasuraman, S., Khan, M.K.A.A.: Joint torque estimation model of Surface Electromyography (sEMG) based on swarm intelligence algorithm for robotic assistive device. Procedia Comput. Sci. 42, 175–182 (2014). https://doi.org/10.1016/j.procs.2014.11.049

    Article  Google Scholar 

  28. Oyong, A.W., Parasuraman, S., Jauw, V.L.: Robot assisted stroke rehabilitation: estimation of muscle force/joint torque from EMG using GA. In: 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 30 Nov–2 Dec 2010, pp. 341–347 (2010). https://doi.org/10.1109/iecbes.2010.5742257

  29. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39, 7420–7431 (2012). https://doi.org/10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  30. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall (1975)

    Google Scholar 

  31. Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8(1), 11–35 (2006). https://doi.org/10.1251/bpo115

    Article  Google Scholar 

  32. Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.: Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl. 14(1) (2011). https://doi.org/10.5120/ijais-3651

    Article  Google Scholar 

  33. Sárkány, N., Tihanyi, A., Szolgay, P.: The design of a mobile multi-channel bio-signal measuring system for rehabilitation purposes. In: 2014 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), 29–31 July 2014, pp. 1–2 (2014). https://doi.org/10.1109/cnna.2014.6888644

  34. Shabani, A., Mahjoob, M.J.: Bio-signal interface for knee rehabilitation robot utilizing EMG signals of thigh muscles. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), 26–28 Oct 2016, pp. 228–233 (2016). https://doi.org/10.1109/icrom.2016.7886851

  35. Shin, D., Kim, J., Koike, Y.: A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101(1), 387–401 (2009). https://doi.org/10.1152/jn.00584.2007

    Article  Google Scholar 

  36. Siebert, T., Stutzig, N., Rode, C.: A hill-type muscle model expansion accounting for effects of varying transverse muscle load. J. Biomech. 66, 57–62 (2018). https://doi.org/10.1016/j.jbiomech.2017.10.043

    Article  Google Scholar 

  37. Subasi, A.: Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 12(8), 2188–2198 (2012). https://doi.org/10.1016/j.asoc.2012.03.035

    Article  Google Scholar 

  38. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  39. Ullah, K., Jung-Hoon, K.: A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression. In: 2009 4th International Conference on Autonomous Robots and Agents, 10–12 Feb 2009, pp. 103–108 (2000). https://doi.org/10.1109/icara.2000.4803995

  40. Valadao, C.T., Loterio, F., Cardoso, V., Bastos, T., Frizera-Neto, A., Carelli, R.: Robotics as a tool for physiotherapy and rehabilitation sessions**Authors acknowledge the financial support from FAPES, CAPES and CNPq. IFAC-PapersOnLine 48(19), 148–153 (2015). https://doi.org/10.1016/j.ifacol.2015.12.025

    Article  Google Scholar 

  41. van Ruijven, L.J., Weijs, W.A.: A new model for calculating muscle forces from electromyograms. Eur. J. Appl. Physiol. 61(5–6), 479–485 (1990)

    Article  Google Scholar 

  42. Veeger, D., Yu, B., An, K.N, Rozendal, H.R.: Parameters for modeling the upper extremity. J. Biomech. 30, 647–652 (1997). https://doi.org/10.1016/s0021-9290(97)00011-0

    Article  Google Scholar 

  43. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 35(4), 543–548 (2002)

    Article  Google Scholar 

  44. Xia, P., Hu, J., Peng, Y.: EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif. Organs 42(5), E67–E77 (2018). https://doi.org/10.1111/aor.13004

    Article  Google Scholar 

  45. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

    Google Scholar 

  46. Zhai, X., Jelfs, B., Chan, R.H.M., Tin, C.: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11, 379 (2017). https://doi.org/10.3389/fnins.2017.00379

    Article  Google Scholar 

  47. Zhang, M., Davies, T.C., Xie, S.: Effectiveness of robot-assisted therapy on ankle rehabilitation—a systematic review. J. Neuroeng. Rehabil. 10, 30 (2013). https://doi.org/10.1186/1743-0003-10-30

    Article  Google Scholar 

  48. Zhao, X., Sun, H., Ye, D.: Ankle rehabilitation robot control based on biological signals. In: 2017 29th Chinese Control and Decision Conference (CCDC), 28–30 May 2017, pp. 6090–6095 (2017). https://doi.org/10.1109/ccdc.2017.7978264

Download references

Acknowledgements

This work was supported by the Australia–China Joint Institute for Health Technology and Innovation established by the University of Technology Sydney (UTS) and Sun Yat-sen University (SYSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baby Jephil, P. et al. (2020). Estimation of Ankle Joint Torque and Angle Based on S-EMG Signal for Assistive Rehabilitation Robots. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9097-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9096-8

  • Online ISBN: 978-981-13-9097-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics