Novel Methodology for Cardiac Arrhythmias Classification Based on Long-Duration ECG Signal Fragments Analysis

  • Paweł PławiakEmail author
  • Moloud Abdar
Part of the Series in BioEngineering book series (SERBIOENG)


According to the reports published by various organizations, it can be seen that about 50 million people are at risk of cardiovascular diseases (CVDs) around the world. Moreover, different types of heart diseases are the most common causes of mortality. This chapter, therefore, investigates a cardiac disorders database (ECG) with 17 classes (normal sinus rhythm, the rhythm of the pacemaker, and fifteen arrhythmias) using a novel classification methodology. The data set is based on long-duration ECG signal fragments. The Electrocardiography (ECG) is a very popular process to record the electrical activity of the heart during specific time. Even though there are a lot of studies in the literature, however, there are many other open issues in the topic. The main objective of the current study is to present a new and efficient methods in order to do automatic recognition of myocardium dysfunctions. The proposed methods are introduced that can be used in different situations such as mobile devices, telemedicine, cloud computing, and finally supporting preventive and supportive treatment of CVDs. Since the performance of proposed algorithms is very important, the time duration, as an additional criterion, is also analyzed in real time. The obtained outcomes demonstrate that our methodology has outstanding performance compared to the methods presented in the literature. This study uses 744 fragments of ECG signal database related to 29 patients from the MIH-BIH Arrhythmia database (only for one lead—MLII). By using Welch’s method and a discrete Fourier transform, the spectral power density is predicted in order to increase the characteristic features of the ECG signals. The research presents a new evolutionary-neural system, based on the SVM classifier. The proposed method shows good performance with high sensitivity (90.19%), specificity (99.39%), and accuracy (98.85%).


  1. 1.
    American Heart Association (AHA): What is cardiovascular disease? Accessed 17 Sept 2018
  2. 2.
    World Health Organization WHO: Cardiovascular diseases. Accessed 17 Sept 2018
  3. 3.
    World Health Organization WHO: Cardiovascular diseases (CVDs). Accessed 17 Sept 2018
  4. 4.
    Abdar, M., Yen, N.Y., Hung, J.C.-S.: Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees. J. Med. Biol. Eng. (2017)Google Scholar
  5. 5.
    Abdar, M., Zomorodi-Moghadam, M.: Impact of patients’ gender on parkinson’s disease using classification algorithms. J. AI Data Min. 6(2), 277–285 (2018)Google Scholar
  6. 6.
    Abdar, M., Zomorodi-Moghadam, M., Das, R., Ting, I.-H.: Performance analysis of classification algorithms on early detection of liver disease. Expert Syst. Appl. 67, 239–251 (2017)CrossRefGoogle Scholar
  7. 7.
    Acharya, U.R., Fujita, H., Adam, M., Lih, O.S., Sudarshan, V.K., Hong, T.J., Koh, J.E., Hagiwara, Y., Chua, C.K., Poo, C.K., San, T.R.: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Inf. Sci. 377, 17–29 (2017)CrossRefGoogle Scholar
  8. 8.
    Acharya, U.R., Hagiwara, Y., Koh, J.E.W., Oh, S.L., Tan, J.H., Adam, M., Tan, R.S.: Entropies for automated detection of coronary artery disease using ECG signals: a review. Biocybern. Biomed. Eng. 38(2), 373–384 (2018)CrossRefGoogle Scholar
  9. 9.
    Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., Tan, R.S.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)CrossRefGoogle Scholar
  10. 10.
    Afkhami, R.G., Azarnia, G., Tinati, M.A.: Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit. Lett. 70, 45–51 (2016)CrossRefGoogle Scholar
  11. 11.
    Alickovic, E., Subasi, A.: Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases. Circuits Syst. Signal Process. 34(2), 513–533 (2015)CrossRefGoogle Scholar
  12. 12.
    Aličković, E., Subasi, A.: Breast cancer diagnosis using GA feature selection and rotation forest. Neural Comput. Appl. 28(4), 753–763 (2017)CrossRefGoogle Scholar
  13. 13.
    Alpaydin, E.: Introduction to Machine Learning. MIT Press (2014)Google Scholar
  14. 14.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  15. 15.
    Arjunan, S.P., Kumar, D.K., Naik, G.R.: A machine learning based method for classification of fractal features of forearm sEMG using twin support vector machines. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Aug 2010, pp. 4821–4824Google Scholar
  16. 16.
    Banerjee, S., Mitra, M.: Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRefGoogle Scholar
  17. 17.
    Bazi, Y., Alajlan, N., AlHichri, H., Malek, S.: Domain adaptation methods for ECG classification. In: 2013 International Conference on Computer Medical Applications (ICCMA), Jan 2013, pp. 1–4Google Scholar
  18. 18.
    Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Bishop, C.: Pattern Recognition and Machine Learning, 1st edn. Springer (2006)Google Scholar
  20. 20.
    Boc, A., Makarenkov, V.: Towards an accurate identification of mosaic genes and partial horizontal gene transfers. Nucl. Acids Res. 39(21), e144 (2011)CrossRefGoogle Scholar
  21. 21.
    Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Complex Syst. 2 (1988)Google Scholar
  22. 22.
    Cabra, J.-L., Mendez, D., Trujillo, L.C.: Wide machine learning algorithms evaluation applied to ECG authentication and gender recognition. In: Proceedings of the 2018 2nd International Conference on Biometric Engineering and Applications, ICBEA ’18, New York, NY, USA, 2018. ACM, pp. 58–64Google Scholar
  23. 23.
    Caraus, I., Mazoure, B., Nadon, R., Makarenkov, V.: Detecting and removing multiplicative spatial bias in high-throughput screening technologies. Bioinformatics 33(20), 3258–3267 (2017)CrossRefGoogle Scholar
  24. 24.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Scholar
  25. 25.
    Chen, S., Hua, W., Li, Z., Li, J., Gao, X.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control. 31, 165–173 (2017)CrossRefGoogle Scholar
  26. 26.
    Chou, C., Chang, E., Li, H., Wu, A.: Low-complexity privacy-preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Trans. Biomed. Circuits Syst. 12(4), 801–811 (2018)CrossRefGoogle Scholar
  27. 27.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  28. 28.
    Cristianini, N., Schölkopf, B.: Support vector machines and kernel methods: the new generation of learning machines. AI Mag. 23(3), 31–41 (2002)Google Scholar
  29. 29.
    da S. Luz, E.J., Nunes, T.M., de Albuquerque, V.H.C., Papa, J.P., Menotti, D.: ECG arrhythmia classification based on optimum-path forest. Expert Syst. Appl. 40(9), 3561–3573 (2013)CrossRefGoogle Scholar
  30. 30.
    da S. Luz, E.J., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Program Biomed. 127, 144–164 (2016)CrossRefGoogle Scholar
  31. 31.
    de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  32. 32.
    de Lammoy, G., Francois, D., Delbeke, J., Verleysen, M.: Weighted SVMs and feature relevance assessment in supervised heart beat classification. Communications in Computer and Information Science, vol. 127. Springer, pp. 212–223 (2010) (ch. Biomedical Engineering Systems and Technologies)Google Scholar
  33. 33.
    de Lannoy, G., Francois, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1), 241–247 (2012)CrossRefGoogle Scholar
  34. 34.
    Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113–127 (2005)CrossRefGoogle Scholar
  35. 35.
    Dora, L., Agrawal, S., Panda, R., Abraham, A.: Optimal breast cancer classification using Gauss-Newton representation based algorithm. Expert. Syst. Appl. 85, 134–145 (2017)CrossRefGoogle Scholar
  36. 36.
    Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016)CrossRefGoogle Scholar
  37. 37.
    Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley (2007)Google Scholar
  38. 38.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Gao, C., Sun, H., Wang, T., Tang, M., Bohnen, N.I., Müller, M.L.T.M., Herman, T., Giladi, N., Kalinin, A., Spino, C., Dauer, W., Hausdorff, J.M., Dinov, I.D.: Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in parkinson’s disease. Sci. Rep. 8(1), 7129 (2018)Google Scholar
  40. 40.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Circulation Electronic Pages:
  41. 41.
    Hassoon, M., Kouhi, M.S., Zomorodi-Moghadam, M., Abdar, M.: Rule optimization of boosted c5.0 classification using genetic algorithm for liver disease prediction. In: 2017 International Conference on Computer and Applications (ICCA), Sept 2017, pp. 299–305Google Scholar
  42. 42.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)CrossRefGoogle Scholar
  43. 43.
    Huang, H., Liu, J., Zhu, Q., Wang, R., Hu, G.: A new hierarchicalmethod for inter-patient heartbeat classification usingrandom projections and RR intervals. Biomed. Eng. Online 13, 1–26 (2014)CrossRefGoogle Scholar
  44. 44.
    Kalgotra, P., Sharda, R., Hammer, B., Albert, D.E.: Sensor analytics for interpretation of EKG signals. Expert. Syst. Appl. 123, 377–385 (2019)CrossRefGoogle Scholar
  45. 45.
    Kawaguchi, T., Tokushige, K., Hyogo, H., Aikata, H., Nakajima, T., Ono, M., Kawanaka, M., Sawada, K., Imajo, K., Honda, K., Takahashi, H., Mori, K., Tanaka, S., Seko, Y., Nozaki, Y., Kamada, Y., Fujii, H., Kawaguchi, A., Takehara, T., Yanase, M., Sumida, Y., Eguchi, Y., Seike, M., Yoneda, M., Suzuki, Y., Saibara, T., Karino, Y., Chayama, K., Hashimoto, E., George, J., Torimura, T.: A data mining-based prognostic algorithm for NAFLD-related hepatoma patients: a nationwide study by the Japan study group of NAFLD. Sci. Rep. 8(1), 10434 (2018)CrossRefGoogle Scholar
  46. 46.
    Książek, W., Abdar, M., Acharya, U.R., Pławiak, P.: A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res. 54, 116–127 (2019)CrossRefGoogle Scholar
  47. 47.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)Google Scholar
  48. 48.
    Lacy, S.E., Smith, S.L., Lones, M.A.: Using echo state networks for classification: a case study in parkinson’s disease diagnosis. Artif. Intell. Med. 86, 53–59 (2018)CrossRefGoogle Scholar
  49. 49.
    Lin, C.C., Yang, C.M.: Heartbeat classification using normalized RR intervals and wavelet features. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), June 2014, pp. 650–653Google Scholar
  50. 50.
    Liu, K., Kang, G., Zhang, N., Hou, B.: Breast cancer classification based on fully-connected layer first convolutional neural networks. IEEE Access 6, 23722–23732 (2018)CrossRefGoogle Scholar
  51. 51.
    Llamedo, M., Martinez, J.P.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)CrossRefGoogle Scholar
  52. 52.
    Ly, Q.T., Handojoseno, A.M.A., Gilat, M., Chai, R., Martens, K.A.E., Georgiades, M., Naik, G.R., Tran, Y., Lewis, S. J.G., Nguyen, H.T.: Detection of gait initiation failure in parkinson’s disease based on wavelet transform and support vector machine. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 2017, pp. 3048–3051Google Scholar
  53. 53.
    Mar, T., Zaunseder, S., Martineznez, J.P., Llamedo, M., Poll, R.: Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 58(8), 2168–2177 (2011)CrossRefGoogle Scholar
  54. 54.
    Martis, R.J., Acharya, U.R., Adeli, H., Prasad, H., Tan, J.H., Chua, K.C., Too, C.L., Yeo, S.W.J., Tong, L.: Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation. Biomed. Signal Process. Control 13, 295–305 (2014)CrossRefGoogle Scholar
  55. 55.
    Mclachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition (Wiley Series in Probability and Statistics). Wiley-Interscience (2004)Google Scholar
  56. 56.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRefGoogle Scholar
  57. 57.
    Naik, G.R., Kumar, D.K., Jayadeva: Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition. Biomedizinische Technik/Biomed. Eng. 55(5), 301–307 (2010)CrossRefGoogle Scholar
  58. 58.
    Oh, S.L., Ng, E.Y., Tan, R.S., Acharya, U.R.: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Comput. Biol. Med. 105, 92–101 (2019)CrossRefGoogle Scholar
  59. 59.
    Park, K.S., Cho, B.H., Lee, D.H., Song, S.H., Lee, J.S., Chee, Y.J., Kim, I.Y., Kim, S.I.: Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function. Comput. Cardiol. 2008, 229–232 (2008)Google Scholar
  60. 60.
    Pławiak, P.: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol. Comput. 39, 192–208 (2018)CrossRefGoogle Scholar
  61. 61.
    Pławiak, P.: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 92, 334–349 (2018)CrossRefGoogle Scholar
  62. 62.
    Pławiak, P., Acharya, U.R.: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Springer Neural Comput. Appl. (2019)Google Scholar
  63. 63.
    Prieto, A., Prieto, B., Ortigosa, E.M., Ros, E., Pelayo, F., Ortega, J., Rojas, I.: Neural networks: an overview of early research, current frameworks and new challenges. Neurocomputing 214, 242–268 (2016)CrossRefGoogle Scholar
  64. 64.
    Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  65. 65.
    Rad, A.B., Eftestol, T., Engan, K., Irusta, U., Kvaloy, J.T., Kramer-Johansen, J., Wik, L., Katsaggelos, A.K.: ECG-based classification of resuscitation cardiac rhythms for retrospective data analysis. IEEE Trans. Biomed. Eng. 64(10), 2411–2418 (2017)CrossRefGoogle Scholar
  66. 66.
    Rajesh, K.N., Dhuli, R.: Classification of imbalanced ECG beats using re-sampling techniques and adaboost ensemble classifier. Biomed. Signal Process. Control 41, 242–254 (2018)CrossRefGoogle Scholar
  67. 67.
    Rodriguez-Sotelo, J., Peluffo-Ordonez, D., Cuesta-Frau, D., Castellanos-Domínguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012)CrossRefGoogle Scholar
  68. 68.
    Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer (2008)Google Scholar
  69. 69.
    Sannino, G., Pietro, G.D.: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Gener. Comput. Syst. 86, 446–455 (2018)CrossRefGoogle Scholar
  70. 70.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)Google Scholar
  71. 71.
    Sharma, M., Deb, D., Acharya, U.R.: A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals. Appl. Intell. 48(5), 1368–1378 (2018)Google Scholar
  72. 72.
    Smith, S.: Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes (2002)Google Scholar
  73. 73.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  74. 74.
    Soria, M.L., Martinez, J.: Analysis of multidomain features for ECG classification. Comput. Cardiol. 2009, 561–564 (2009)Google Scholar
  75. 75.
    Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)CrossRefGoogle Scholar
  76. 76.
    Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co. (1985)Google Scholar
  77. 77.
    Tadeusiewicz, R.: Neural networks as a tool for modeling of biological systems. Bio-Algorithms Med-Syst. 11(3), 135–144 (2015)Google Scholar
  78. 78.
    Tahiri, N., Willems, M., Makarenkov, V.: A new fast method for inferring multiple consensus trees using k-medoids. BMC Evol. Biol. 18(1), 48 (2018)CrossRefGoogle Scholar
  79. 79.
    Tverskoi, D., Makarenkov, V., Aleskerov, F.: Modeling functional specialization of a cell colony under different fecundity and viability rates and resource constraint. PLOS One 13(8), 1–27 (2018)CrossRefGoogle Scholar
  80. 80.
    Varatharajan, R., Manogaran, G., Priyan, M.K.: A big data classification approach using LDA with an enhanced SVM method for ECG signals in cloud computing. Multimed. Tools Appl. 77(8), 10195–10215 (2018)CrossRefGoogle Scholar
  81. 81.
    Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)CrossRefGoogle Scholar
  82. 82.
    Yang, W., Si, Y., Wang, D., Guo, B.: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine. Comput. Biol. Med. 101, 22–32 (2018)CrossRefGoogle Scholar
  83. 83.
    Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification. In: 2012 21st International Conference on Pattern Recognition (ICPR), Nov 2012, pp. 2428–2431Google Scholar
  84. 84.
    Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)CrossRefGoogle Scholar
  85. 85.
    Yildirim, O.: A novel wavelet sequence based on deep bidirectional ISTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)CrossRefGoogle Scholar
  86. 86.
    Yildirim, O.: ECG beat detection and classification system using wavelet transform and online sequential ELM. J. Mech. Med. Biol. 19, 1940008 (2019)CrossRefGoogle Scholar
  87. 87.
    Yildirim, O., Pławiak, P., Tan, R.-S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102, 411–420 (2018)CrossRefGoogle Scholar
  88. 88.
    Yu, M.-L., Li, S.-M., Gao, X., Li, J.-G., Xu, H., Chen, K.-J.: Sodium tanshinone II a sulfonate for coronary heart disease: a systematic review of randomized controlled trials. Chin. J. Integr. Med. (2018)Google Scholar
  89. 89.
    Zham, P., Arjunan, S.P., Raghav, S., Kumar, D.K.: Efficacy of guided spiral drawing in the classification of parkinson’s disease. IEEE J. Biomed. Health Inform. 22(5), 1648–1652 (2018)CrossRefGoogle Scholar
  90. 90.
    Zhang, Z., Dong, J., Luo, X., Choi, K.-S., Wu, X.: Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46, 79–89 (2014)CrossRefGoogle Scholar
  91. 91.
    Zhang, Z., Luo, X.: Heartbeat classification using decision level fusion. Biomed. Eng. Lett. 4(4), 388–395 (2014)CrossRefGoogle Scholar
  92. 92.
    Zubair, M., Kim, J., Yoon, C.: An automated ECG beat classification system using convolutional neural networks. In: 2016 6th International Conference on IT Convergence and Security (ICITCS), Sept 2016, pp. 1–5Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Faculty of Physics, Mathematics and Computer ScienceCracow University of TechnologyKrakowPoland
  2. 2.Département d’InformatiqueUniversité du Québec a MontréalMontréalCanada

Personalised recommendations