Virus-Mediated Cancers in Animals

  • Catherine Paul
  • Rajeev KaulEmail author


Ever since the discovery of the first tumour-associated virus in hen by Peyton Rous in 1911, cancer-causing viruses have been extensively investigated over the last century. Subsequently, tumour-associated viruses were discovered in several other animal species. Some of these are responsible for severe economic losses to farmers. Exposure to at least one animal virus has lately been reported to be related with cancer in humans. The ability of some of tumour viruses to cross species barrier and infect wild birds or animals to establish a natural reservoir of circulating virus, which can further evolve, may pose a major challenge to veterinary as well as human medicine. Animal tumour viruses have also been used as model system in their natural host as well as in laboratory animals to study the molecular basis of cellular tumorigenesis. This review attempts to summarize the important historical advances and some of the recent developments in the field of tumour viruses of animals with a focus on inter-species transmission.


Viral cancer Pathogenesis Animals Inter-species transmission 



All the authors of the manuscript thank and acknowledge their respective universities and institutes.

Conflict of Interest

There is no conflict of interest.


  1. Baltzell KA, Shen HM, Krishnamurthy S, Sison JD, Nuovo GJ, Buehring GC (2018) Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: case-control study of women in Texas. Cancer 124:1342–1349. Scholar
  2. Buehring GC, Shen HM, Jensen HM, Jin DL, Hudes M, Block G (2015) Exposure to bovine leukemia virus is associated with breast cancer: a case-control study. PLoS One 10:e0134304. Scholar
  3. Buehring GC, Shen H, Schwartz DA, Lawson JS (2017) Bovine leukemia virus linked to breast cancer in Australian women and identified before breast cancer development. PLoS One 12:e0179367. Scholar
  4. Butera ST et al (2000) Survey of veterinary conference attendees for evidence of zoonotic infection by feline retroviruses. J Am Vet Med Assoc 217:1475–1479CrossRefGoogle Scholar
  5. Campo MS (1992) Cell transformation by animal papillomaviruses. J Gen Virol 73(Pt 2):217–222. Scholar
  6. Duran-Reynals F (1947) Transmission to adult pigeons of several variants of the Rous sarcoma of chickens. Cancer Res 7:103–106PubMedGoogle Scholar
  7. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703. doi:S0140-6736(64)91523-5 [pii]CrossRefGoogle Scholar
  8. Gillet NA, Willems L (2016) Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology 13:75. doi:10.1186/s12977-016-0308-3[pii]CrossRefGoogle Scholar
  9. Holzschu D, Lapierre LA, Lairmore MD (2003) Comparative pathogenesis of epsilonretroviruses. J Virol 77:12385–12391. Scholar
  10. Jarrett O (1999) Strategies of retrovirus survival in the cat. Vet Microbiol 69:99–107. doi:10.1016/S0378-1135(99)00095-4[pii]CrossRefGoogle Scholar
  11. Jarrett O, Laird HM, Hay D (1969) Growth of feline leukaemia virus in human cells. Nature 224:1208–1209CrossRefGoogle Scholar
  12. Jelinek F, Tachezy R (2005) Cutaneous papillomatosis in cattle. J Comp Pathol 132:70–81. doi:S0021-9975(04)00080-5 [pii] 10.1016/j.jcpa.2004.07.001CrossRefGoogle Scholar
  13. Katzourakis A, Magiorkinis G, Lim AG, Gupta S, Belshaw R, Gifford R (2014) Larger mammalian body size leads to lower retroviral activity. PLoS Pathog 10:e1004214. doi:10.1371/journal.ppat.1004214 PPATHOGENS-D-13-03152 [pii]CrossRefGoogle Scholar
  14. Kawai S, Nishizawa M, Shinno-Kohno H, Shiroki K (1989) A variant Schmidt-Ruppin strain of Rous sarcoma virus with increased affinity for mammalian cells. Jpn J Cancer Res 80:1179–1185CrossRefGoogle Scholar
  15. Krengel A et al (2015) Gammaretrovirus-specific antibodies in free-ranging and captive Namibian cheetahs. Clin Vaccine Immunol 22:611–617. doi:10.1128/CVI.00705-14 CVI.00705-14 [pii]CrossRefGoogle Scholar
  16. LaPierre LA, Holzschu DL, Wooster GA, Bowser PR, Casey JW (1998) Two closely related but distinct retroviruses are associated with walleye discrete epidermal hyperplasia. J Virol 72:3484–3490PubMedPubMedCentralGoogle Scholar
  17. LaPierre LA, Holzschu DL, Bowser PR, Casey JW (1999) Sequence and transcriptional analyses of the fish retroviruses walleye epidermal hyperplasia virus types 1 and 2: evidence for a gene duplication. J Virol 73:9393–9403PubMedPubMedCentralGoogle Scholar
  18. Laurent S, Esnault E, Dambrine G, Goudeau A, Choudat D, Rasschaert D (2001) Detection of avian oncogenic Marek’s disease herpesvirus DNA in human sera. J Gen Virol 82:233–240. Scholar
  19. Lee JS et al (2014) Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J Virol 88:7727–7737. doi:10.1128/JVI.00473-14 JVI.00473-14 [pii]CrossRefGoogle Scholar
  20. Lee J et al (2017) Feline immunodeficiency virus cross-species transmission: implications for emergence of new lentiviral infections. J Virol 91. doi:e02134-16 [pii] 10.1128/JVI.02134-16 JVI.02134-16 [pii]Google Scholar
  21. Levine AJ (2009) The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384:285–293. doi:10.1016/j.virol.2008.09.034 S0042-6822(08)00639-9 [pii]CrossRefGoogle Scholar
  22. Magden E, Quackenbush SL, VandeWoude S (2011) FIV associated neoplasms – a mini-review. Vet Immunol Immunopathol 143:227–234. doi:10.1016/j.vetimm.2011.06.016 S0165-2427(11)00213-3 [pii]CrossRefGoogle Scholar
  23. McGirr KM, Buehring GC (2005) Tax and rex sequences of bovine leukaemia virus from globally diverse isolates: rex amino acid sequence more variable than tax. J Vet Med B Infect Dis Vet Public Health 52:8–16. doi:JVB815 [pii] 10.1111/j.1439-0450.2004.00815.xCrossRefGoogle Scholar
  24. McHatters GR, Scham RG (1995) Bird viruses in multiple sclerosis: combination of viruses or Marek’s alone? Neurosci Lett 188:75–76. doi:0304-3940(95)11398-G [pii]CrossRefGoogle Scholar
  25. Modiano JF, Getzy DM, Akol KG, Van Winkle TJ, Cockerell GL (1995) Retrovirus-like activity in an immunosuppressed dog: pathological and immunological findings. J Comp Pathol 112:165–183. doi:S0021-9975(05)80059-3 [pii]CrossRefGoogle Scholar
  26. Moratorio G et al (2010) Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol 155:481–489. Scholar
  27. Nasir L, Campo MS (2008) Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 19:243–254CrossRefGoogle Scholar
  28. Niewiadomska AM, Gifford RJ (2013) The extraordinary evolutionary history of the reticuloendotheliosis viruses. PLoS Biol 11:e1001642. doi:10.1371/journal.pbio.1001642 PBIOLOGY-D-13-00757 [pii]CrossRefGoogle Scholar
  29. Nudson WA, Rovnak J, Buechner M, Quackenbush SL (2003) Walleye dermal sarcoma virus Orf C is targeted to the mitochondria. J Gen Virol 84:375–381. Scholar
  30. Olsen RG, Mathes LE, Tarr MJ, Blakeslee JR (1986) Oncogenic viruses of domestic animals. Vet Clin North Am Small Anim Pract 16:1129–1144CrossRefGoogle Scholar
  31. Pavlenko SM (1973) Some tasks of modern pathological physiology. Patol Fiziol Eksp Ter 17:3–6PubMedGoogle Scholar
  32. Plachy J et al (2017) Identification of New World quails susceptible to infection with Avian Leukosis virus subgroup J. J Virol 91. doi:e02002-16 [pii] 10.1128/JVI.02002-16 JVI.02002-16 [pii]Google Scholar
  33. Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y (2017) The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol 162:425–437. doi:10.1007/s00705-016-3118-y 10.1007/s00705-016-3118-y [pii]CrossRefGoogle Scholar
  34. Rice NR, Simek SL, Dubois GC, Showalter SD, Gilden RV, Stephens RM (1987) Expression of the bovine leukemia virus X region in virus-infected cells. J Virol 61:1577–1585PubMedPubMedCentralGoogle Scholar
  35. Romen F, Pawlita M, Sehr P, Bachmann S, Schröder J, Lutz H, Löchelt M (2006) Antibodies against Gag are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is undetectable in a substantial fraction of infected cats. Virology 345:502–508. Scholar
  36. Rous P (1910) A transmissible avian neoplasm. (Sarcoma of the Common Fowl.). J Exp Med 12:696–705CrossRefGoogle Scholar
  37. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411CrossRefGoogle Scholar
  38. Rovnak J, Quackenbush SL (2002) Walleye dermal sarcoma virus cyclin interacts with components of the mediator complex and the RNA polymerase II holoenzyme. J Virol 76:8031–8039. Scholar
  39. Schat KA, Erb HN (2014) Lack of evidence that avian oncogenic viruses are infectious for humans: a review. Avian Dis 58:345–358. Scholar
  40. Shen Y, He M, Zhang J, Zhao M, Wang G, Cheng Z (2016) Cross-species transmission of Avian Leukosis virus subgroup J. Bing Du Xue Bao 32:46–55PubMedGoogle Scholar
  41. Svet-Moldavsky GI (1958) The pathogenicity of Rous sarcoma virus for mammals; multiple cysts and haemorrhagic lesions of internal organs in white rats after inoculation with Rous virus during the embryonic or newborn period. Acta Virol 2:1–6PubMedGoogle Scholar
  42. Svoboda J (1986) Rous sarcoma virus. Intervirology 26:1–60. Scholar
  43. Tachibana H, Kobayashi S, Cheng XJ, Hiwatashi E (1997) Differentiation of Entamoeba histolytica from E. dispar facilitated by monoclonal antibodies against a 150-kDa surface antigen. Parasitol Res 83:435–439CrossRefGoogle Scholar
  44. Terry A et al (2017) Barriers to infection of human cells by feline leukemia virus: insights into resistance to zoonosis. J Virol 91. doi:e02119-16 [pii] 10.1128/JVI.02119-16 JVI.02119-16 [pii]Google Scholar
  45. Trewby H et al (2014) Analysis of the long control region of bovine papillomavirus type 1 associated with sarcoids in equine hosts indicates multiple cross-species transmission events and phylogeographical structure. J Gen Virol 95:2748–2756. doi:10.1099/vir.0.066589-0 vir.0.066589-0 [pii]CrossRefGoogle Scholar
  46. Truyen U, Lochelt M (2006) Relevant oncogenic viruses in veterinary medicine: original pathogens and animal models for human disease. Contrib Microbiol 13:101–117. doi:92968 [pii] 10.1159/000092968CrossRefGoogle Scholar
  47. Walsh SR et al (2013) Experimental transmission of enzootic nasal adenocarcinoma in sheep. Vet Res 44:66. doi:10.1186/1297-9716-44-66 1297-9716-44-66 [pii]CrossRefGoogle Scholar
  48. Walsh SR, Gerpe MC, Wootton SK (2016) Construction of a molecular clone of ovine enzootic nasal tumor virus. Virol J 13:209. Scholar
  49. Wang M, Wang Y, Baloch AR, Pan Y, Xu F, Tian L, Zeng Q (2018) Molecular epidemiology and characterization of bovine leukemia virus in domestic yaks (Bos grunniens) on the Qinghai-Tibet Plateau, China. Arch Virol 163:659–670. doi:10.1007/s00705-017-3658-9[pii]CrossRefGoogle Scholar
  50. Wigand R et al (1982) Adenoviridae: second report. Intervirology 18:169–176. Scholar
  51. Zhang R et al (2016) Lack of association between bovine leukemia virus and breast cancer in Chinese patients. Breast Cancer Res 18:101. doi:10.1186/s13058-016-0763-8 [pii]CrossRefGoogle Scholar
  52. zur Hausen H, de Villiers EM, Gissmann L (1981) Papillomavirus infections and human genital cancer. Gynecol Oncol 12:S124–S128CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Delhi, South CampusNew DelhiIndia

Personalised recommendations