Porcine Circovirus

  • G. Saikumar
  • Tareni Das


Porcine circovirus (PCV) infections associated with post-weaning multisystemic wasting syndrome (PMWS) are characterized by weight loss, respiratory distress, jaundice, etc. Although PCV2 infection is ubiquitous, the prevalence of clinical disease is lower and the most common form is PCV2 subclinical infection. Recently, a novel porcine circovirus (PCV3) has been identified in pigs in the USA that is associated with porcine dermatitis nephropathy syndrome, acute myocarditis and multisystemic inflammation, etc. Genetic heterogeneity of PCV2 has been studied in Indian pig population. Different genotypes like PCV2a-2D, PCV2b-1C, PCV2d and recombinant strain between PCV2a-2C and PCV2b-1C are reported from different studies. PCV2 has been discovered in human faeces, human vaccines and beef. But its pathogenicity in humans is not clear. PCV detection is based on common golden standard techniques including nucleic acid and antigen detection in the tissues, in situ hybridization (ISH) and immunohistochemistry (IHC) using monoclonal or polyclonal antibody against PCV2, respectively. The commercial vaccines available are effective in reducing the severity of clinical diseases and improving production parameters. Recently, antiviral compounds have also shown promising results against PCV2. This chapter summarizes aetiology, epidemiology, transmission, immunopathobiology, diagnosis, prevention and control of porcine circovirus.


Porcine circovirus PCV Porcine kidney cell line Post-weaning multisystemic wasting syndrome Aetiology Epidemiology Transmission Immunopathobiology Diagnosis Prevention and control 



All the authors of the manuscript thank and acknowledge their respective universities and institutes.

Conflict of Interest

There is no conflict of interest.


  1. Afolabi KO, Iweriebor BC, Okoh AI, Obi LC (2017) Global status of porcine circovirus type 2 and its associated diseases in Sub-Saharan Africa. Adv Virol 2017Google Scholar
  2. Alarcon P, Rushton J, Wieland B (2013) Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England – an economic disease model. Prev Vet Med 110(2):88–102PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Investig 12(1):3–14CrossRefGoogle Scholar
  4. Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, Krakowka SJ, Meehan BM, Adair BM (1999) Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  5. Allan GM, McNeilly F, Ellis J, Krakowka S, Meehan B, McNair I, Walker I, Kennedy S (2000) Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol 145(11):2421–2429PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allan GM, Caprioli A, McNair I, Lagan-Tregaskis P, Ellis J, Krakowka S, McKillen J, Ostanello F, McNeilly F (2007) Porcine circovirus 2 replication in colostrum-deprived piglets following experimental infection and immune stimulation using A modified live vaccine against porcine respiratory and reproductive syndrome virus. Zoonoses Public Health 54(5):214–222PubMedCrossRefPubMedCentralGoogle Scholar
  7. Allan G, Krakowka S, Ellis J, Charreyre C (2012) Discovery and evolving history of two genetically related but phenotypically different viruses, porcine circoviruses 1 and 2. Virus Res 164(1–2):4–9PubMedCrossRefPubMedCentralGoogle Scholar
  8. Andraud M, Rose N, Grasland B, Pierre JS, Jestin A, Madec F (2009) Influence of husbandry and control measures on porcine circovirus type 2 (PCV-2) dynamics within a farrow-to-finish pig farm: a modelling approach. Prev Vet Med 92:38–51PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anoopraj R, John JK, Sethi M, Somvanshi R, Saikumar G (2014) Isolation and identification of porcine circovirus 2 from cases of respiratory disease and postweaning multisystemic wasting syndrome in pigs. Adv Anim Vet Sci 2(6):365–368CrossRefGoogle Scholar
  10. Anoopraj R, Rajkhowa TK, Cherian S, Arya RS, Tomar N, Gupta A, Ray PK, Somvanshi R, Saikumar G (2015) Genetic characterisation and phylogenetic analysis of PCV2 isolates from India: indications for emergence of natural inter-genotypic recombinants. Infect Genet Evol 31:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  11. Balmelli C, Steiner E, Moulin H, Peduto N, Herrmann B, Summerfield A, McCullough K (2011) Porcine circovirus type 2 DNA influences cytoskeleton rearrangements in plasmacytoid and monocyte-derived dendritic cells. Immunology 132(1):57–65PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bao F, Mi S, Luo Q, Guo H, Tu C, Zhu G, Gong W (2018) Retrospective study of porcine circovirus type 2 infection reveals a novel genotype PCV2f. Transbound Emerg Dis 65(2):432–440PubMedCrossRefGoogle Scholar
  13. Beach NM, Meng XJ (2012) Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res 164(1–2):33–42PubMedCrossRefGoogle Scholar
  14. Bhattacharjee U, Ahuja A, Sharma I, Karam A, Chakraborty AK, Ghatak S, Puro K, Das S, Shakuntala I, Giri S, Pegu RK (2015) Complete genome sequence of emerging porcine circovirus types 2a and 2b from India. Genome Announc 3(2):e00087–e00015PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blunt R, McOrist S, McKillen J, McNair I, Jiang T, Mellits K (2011) House fly vector for porcine circovirus 2b on commercial pig farms. Vet Microbiol 149(3–4):452–455PubMedCrossRefGoogle Scholar
  16. Brunborg IM, Moldal T, Jonassen CM (2004) Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J Virol Methods 122(2):171–178PubMedCrossRefGoogle Scholar
  17. Carman S, Cai HY, DeLay J, Youssef SA, McEwen BJ, Gagnon CA, Tremblay D, Hazlett M, Lusis P, Fairles J et al (2008) The emergence of a new strain of porcine circovirus-2 in Ontario and Quebec swine and its association with severe porcine circovirus associated disease—2004–2006. Can J Vet Res 72:259–268PubMedPubMedCentralGoogle Scholar
  18. Chang HW, Jeng CR, Lin TL, Liu JJ, Chiou MT, Tsai CY, Chia MY, Jan TR, Pang VF (2006) Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet Immunol Immunopathol 110(3–4):207–219PubMedCrossRefGoogle Scholar
  19. Chang HW, Jeng CR, Lin CM, Liu JJ, Chang CC, Tsai YC, Chia MY, Pang VF (2007) The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-inoculation-associated lymphocyte apoptosis in vitro. Vet Microbiol 122(1–2):72–82PubMedCrossRefGoogle Scholar
  20. Chang GN, Hwang JF, Chen JT, Tsen HY, Wang JJ (2010) Fast diagnosis and quantification for porcine circovirus type 2 (PCV-2) using real-time polymerase chain reaction. J Microbiol Immunol Infect 43(2):85–92PubMedCrossRefGoogle Scholar
  21. Chen X, Ren F, Hesketh J, Shi X, Li J, Gan F, Hu Z, Huang K (2013) Interaction of porcine circovirus type 2 replication with intracellular redox status in vitro. Redox Rep 18(5):186–192PubMedCrossRefGoogle Scholar
  22. Cheng S, Yan W, Gu W, He Q (2014) The ubiquitin-proteasome system is required for the early stages of porcine circovirus type 2 replication. Virology 456:198–204PubMedCrossRefGoogle Scholar
  23. Choi CY, Rho SB, Kim HS, Han J, Bae J, Lee SJ, Jung WW, Chun T (2015) The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction. J Gen Virol 96(5):1098–1108PubMedCrossRefGoogle Scholar
  24. Clark EG (1997) Post-weaning multisystemic wasting syndrome. Proc Annu Meet Am Assoc Swine Pract 28:3Google Scholar
  25. Cino-Ozuna AG, Henry S, Hesse R, Nietfeld JC, Bai J, Scott HM, Rowland RR (2011) Characterization of a new disease syndrome associated with porcine circovirus type 2 in previously vaccinated herds. J Clin Microbiol 49(5):2012–2016PubMedPubMedCentralCrossRefGoogle Scholar
  26. Collins PJ, McKillen J, Allan G (2017) Porcine circovirus type 3 in the UK. Vet Rec 181(22):599–599PubMedCrossRefGoogle Scholar
  27. Correa AM, Zlotowski P, de Barcellos DE, da Cruz CE, Driemeier D (2007) Brain lesions in pigs affected with postweaning multisystemic wasting syndrome. J Vet Diagn Investig 19(1):109–112CrossRefGoogle Scholar
  28. Cortey M, Segalés J (2012) Low levels of diversity among genomes of porcine circovirus type 1 (PCV1) points to differential adaptive selection between porcine circoviruses. Virology 422(2):161–164PubMedCrossRefGoogle Scholar
  29. Darwich L, Mateu E (2012) Immunology of porcine circovirus type 2 (PCV2). Virus Res 164(1–2):61–67PubMedCrossRefPubMedCentralGoogle Scholar
  30. Darwich L, Balasch M, Plana-Durán J, Segalés J, Domingo M, Mateu E (2003a) Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol 84(12):3453–3457PubMedCrossRefGoogle Scholar
  31. Darwich L, Pie S, Rovira A, Segalés J, Domingo M, Oswald IP, Mateu E (2003b) Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. J Gen Virol 84:2117–2125PubMedCrossRefGoogle Scholar
  32. De Boisseson C, Beven V, Bigarre L, Thiery R, Rose N, Eveno E, Madec F, Jestin A (2004) Molecular characterization of porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs. J Gen Virol 85(2):293–304PubMedCrossRefPubMedCentralGoogle Scholar
  33. Doster AR, Subramaniam S, Yhee JY, Kwon BJ, Yu CH, Kwon SY, Osorio FA, Sur JH (2010) Distribution and characterization of IL-10-secreting cells in lymphoid tissues of PCV2-infected pigs. J Vet Sci 11(3):177–183PubMedPubMedCentralCrossRefGoogle Scholar
  34. Drolet R, Thibault S, D’Allaire S, Thomson JR, Done SH (1999) Porcine dermatitis and nephropathy syndrome (PDNS): an overview of the disease. J Swine Health Prod 7:283–285Google Scholar
  35. Dupont K, Nielsen EO, Baekbo P, Larsen LE (2008) Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet Microbiol 128:56–64PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ellis JE (2003) Porcine circovirus: an old virus in a new guise causes an emerging disease through a novel pathogenesis. Large Anim Vet Rounds 3:1–6Google Scholar
  37. Ellis JA, Bratanich A, Clark EG, Allan GM, Meehan BM, Haines DM, Harding J, West KH, Krakowka S, Konoby C, Hassard L, Martin K, McNeilly F (2000) Co-infection by porcine circovirus and porcine parvovirus in pigs with multisystemic wasting syndrome. J Vet Diagn Investig 12(1):21–27CrossRefGoogle Scholar
  38. Fabisiak M, Szczotka A, Podgórska K, Stadejek T (2012) Prevalence of infection and genetic diversity of porcine circovirus type 2 (PCV2) in wild boar (Sus scrofa) in Poland. J Wildl Dis 48(3):612–618PubMedCrossRefPubMedCentralGoogle Scholar
  39. Faccini S, Barbieri I, Gilioli A, Sala G, Gibelli LR, Moreno A, Sacchi C, Rosignoli C, Franzini G, Nigrelli A (2017) Detection and genetic characterization of porcine circovirus type 3 in Italy. Transbound Emerg Dis 64(6):1661–1664PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fenaux M, Halbur PG, Gill M, Toth TE, Meng XJ (2000) Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2. J Clin Microbiol 38(7):2494–2503PubMedPubMedCentralGoogle Scholar
  41. Fenaux M, Opriessnig T, Halbur PG, Elvinger F, Meng XJ (2004) Two aminoacid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J Virol 78(24):13440–13446PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fort M, Sibila M, Allepuz A, Mateu E, Roerink F, Segalés J (2008) Porcine circovirus type 2 (PCV2) vaccination of conventional pigs prevents viremia against PCV2 isolates of different genotypes and geographic origins. Vaccine 26(8):1063–1071PubMedCrossRefGoogle Scholar
  43. Gagnon C, Tremblay D, Tijssen P, Venne MH, Houde A, Elahi SM (2007) PCV2 strain variation: what does it mean? Proc Am Assoc Swine Vet 38:535–540Google Scholar
  44. Gagnon CA, Del Castillo JR, Music N, Fontaine G, Harel J, Tremblay D (2008) Development and use of a multiplex real-time quantitative polymerase chain reaction assay for detection and differentiation of porcine circovirus-2 genotypes 2a and 2b in an epidemiological survey. J Vet Diagn Investig 20(5):545–558CrossRefGoogle Scholar
  45. Gagnon CA, Music N, Fontaine G, Tremblay D, Harel J (2010) Emergence of a new type of porcine circovirus in swine (PCV): a type 1 and type 2 PCV recombinant. Vet Microbiol 144:18–23PubMedCrossRefPubMedCentralGoogle Scholar
  46. Galindo-Cardiel I, Grau-Roma L, Pérez-Maillo M, Segalés J (2011) Characterization of necrotizing lymphadenitis associated with porcine circovirus type 2 infection. J Comp Pathol 144(1):63–69PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gan F, Zhang Z, Hu Z, Hesketh J, Xue H, Chen X, Hao S, Huang Y, Ezea PC, Parveen F, Huang K (2015) Ochratoxin A promotes porcine circovirus type 2 replication in vitro and in vivo. Free Radic Biol Med 80:33–47PubMedCrossRefPubMedCentralGoogle Scholar
  48. Grau-Roma L, Fraile L, Segalés J (2011) Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J 187:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  49. Grierson SS, King DP, Wellenberg GJ, Banks M (2004) Genomesequence analysis of 10 Dutch porcine circovirus type 2 (PCV-2) isolates from a PMWS case–control study. Res Vet Sci 77(3):265–268PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ha Y, Lee YH, Ahn KK, Kim B, Chae C (2008) Reproduction of postweaning multisystemic wasting syndrome in pigs by prenatal porcine circovirus 2 infection and postnatal porcine parvovirus infection or immunostimulation. Vet Pathol 45(6):842–848PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ha Y, Ahn KK, Kim B, Cho K-D, Lee BH, Oh Y-S, Kim S-H, Chae C (2009) Evidence of shedding of porcine circovirus type 2 in milk from experimentally infected sows. Res Vet Sci 86(1):108–110PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hamel AL, Lin LL, Nayar GP (1998) Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72(6):5262–5267PubMedPubMedCentralGoogle Scholar
  53. Hamel AL, Lin LL, Sachvie C, Grudeski E, Nayar GP (2000) PCR detection and characterization of type-2 porcine circovirus. Can J Vet Res 64(1):44PubMedPubMedCentralGoogle Scholar
  54. Harding JC (1996) Post-weaning multisystemic wasting syndrome: preliminary epidemiology and clinical findings. Proceedings of West Can. Association of Swine Practitioners. p 21Google Scholar
  55. Harding JC, Clark EG (1997) Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS). J Swine Health Prod 5:201–203Google Scholar
  56. He J, Cao J, Zhou N, Jin Y, Wu J, Zhou J (2013) Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J Virol 87(3):1420–1429PubMedPubMedCentralCrossRefGoogle Scholar
  57. Huang S, Yu X, Yang L, Song F, Chen G, Lv Z, Li T, Chen D, Zhu W, Yu A, Zhang Y (2014) The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles. Eur J Pharm Sci 63:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  58. Jacobsen B, Krueger L, Seeliger F, Bruegmann M, Segalés J, Baumgaertner W (2009) Retrospective study on the occurrence of porcine circovirus 2 infection and associated entities in northern Germany. Vet Microbiol 138(1–2):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jensen TK, Vigre H, Svensmark B, Bille-Hansen V (2006) Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol 135:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  60. Johnson CS, Joo HS, Direksin K, Yoon KJ, Choi YK (2002) Experimental in utero inoculation of late-term swine fetuses with porcine circovirus type 2. J Vet Diagn Investig 14(6):507–512CrossRefGoogle Scholar
  61. Karuppannan AK, Ramesh A, Reddy YK, Ramesh S, Mahaprabhu R, Jaisree S, Roy P, Sridhar R, Pazhanivel N, Sakthivelan SM, Sreekumar C (2016) Emergence of porcine circovirus 2 associated reproductive failure in Southern India. Transbound Emerg Dis 63(3):314–320PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kawashima K, Tsunemitsu H, Horino R et al (2003) Effects of dexamethasone on the pathogenesis of porcine circovirus type 2 infection in piglets. J Comp Pathol 129:294–302PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kennedy S, Segalés J, Rovira A, Scholes S, Domingo M, Moffett D, Meehan B, O’Neill R, McNeilly F, Allan G (2003) Absence of evidence of porcine circovirus infection in piglets with congenital tremors. J Vet Diagn Investig 15(2):151–156CrossRefGoogle Scholar
  64. Kim J, Chae C (2001) Differentiation of porcine circovirus 1 and 2 in formalin-fixed, paraffin-wax-embedded tissues from pigs with postweaning multisystemic wasting syndrome by in-situ hybridisation. Res Vet Sci 70(3):265–269PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kim J, Chae C (2002) Simultaneous detection of porcine circovirus 2 and porcine parvovirus in naturally and experimentally coinfected pigs by double in situ hybridization. J Vet Diagn Investig 14(3):236–240CrossRefGoogle Scholar
  66. Kim J, Chae C (2003) Multiplex nested PCR compared with in situ hybridization for the differentiation of porcine circoviruses and porcine parvovirus from pigs with postweaning multisystemic wasting syndrome. Can J Vet Res 67(2):133PubMedPubMedCentralGoogle Scholar
  67. Kim J, Chae C (2005) Necrotising lymphadenitis associated with porcine circovirus type 2 in pigs. Vet Rec 156(6):177–178PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kim J, Chung HK, Chae C (2003a) Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J 166(3):251–256PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kim J, Han DU, Choi C, Chae C (2003b) Simultaneous detection and differentiation between porcine circovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chain reaction. J Vet Med Sci 65(6):741–744PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kim J, Ha Y, Jung K, Choi C, Chae C (2004) Enteritis associated with porcine circovirus 2 in pigs. Can J Vet Res 68(3):218–221PubMedPubMedCentralGoogle Scholar
  71. Krakowka S, Ellis JA, McNeilly F, Gilpin D, Meehan B, McCullough K, Allan G (2002) Immunologic features of porcine circovirus type 2 infection. Viral Immunol 15(4):567–582PubMedCrossRefPubMedCentralGoogle Scholar
  72. Krakowka S, Ellis J, McNeilly F, Waldner C, Rings DM, Allan G (2007) Mycoplasma hyopneumoniae bacterins and porcine circovirus type 2 (PCV2) infection: induction of postweaning multisystemic wasting syndrome (PMWS) in the gnotobiotic swine model of PCV2-associated disease. Can Vet J 48(7):716PubMedPubMedCentralGoogle Scholar
  73. Ku X, Chen F, Li P, Wang Y, Yu X, Fan S, Qian P, Wu M, He Q (2017) Identification and genetic characterization of porcine circovirus type 3 in China. Transbound Emerg Dis 64:703–708PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kumar SK, Selvaraj R, Hariharan T, Chanrahassan C, Reddy YKM (2014) Porcine Circovirus-2 an emerging disease of crossbred pigs in Tamil Nadu, India. Int J Sci Environ Technol 3:1268–1272Google Scholar
  75. Kwon T, Yoo SJ, Park CK, Lyoo YS (2017) Prevalence of novel porcine circovirus 3 in Korean pig populations. Vet Microbiol 207:178–180PubMedCrossRefPubMedCentralGoogle Scholar
  76. Larochelle R, Antaya M, Morin M, Magar R (1999) Typing of porcine circovirus in clinical specimens by multiplex PCR. J Virol Methods 80(1):69–75PubMedCrossRefPubMedCentralGoogle Scholar
  77. Larochelle R, Bielanski A, Müller P, Magar R (2000) PCR detection and evidence of shedding of porcine circovirus type 2 in boar semen. J Clin Microbiol 38(12):4629–4632PubMedPubMedCentralGoogle Scholar
  78. Li L, Shan T, Soji OB, Alam MM, Kunz TH, Zaidi SZ, Delwart E (2011) Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 92(4):768–772PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu Q, Wang L, Willson P, O’Connor B, Keenliside J, Chirino-Trejo M, Meléndez R, Babiuk L (2002) Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica. Can J Vet Res 66(4):225PubMedPubMedCentralGoogle Scholar
  80. Liu J, Chen I, Du Q, Chua H, Kwang J (2006) The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J Virol 80(10):5065–5073PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liu J, Zhu Y, Chen I, Lau J, He F, Lau A, Wang Z, Karuppannan AK, Kwang J (2007) The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J Virol 81(17):9560–9567PubMedPubMedCentralCrossRefGoogle Scholar
  82. Liu J, Bai J, Zhang L, Jiang Z, Wang X, Li Y, Jiang P (2013) Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 447(1–2):52–62PubMedCrossRefPubMedCentralGoogle Scholar
  83. Liu J, Zhang L, Zhu X, Bai J, Wang L, Wang X, Jiang P (2014) Heat shock protein 27 is involved in PCV2 infection in PK-15 cells. Virus Res 189:235–242PubMedCrossRefGoogle Scholar
  84. Lopez-Soria S, Nofrarias M, Calsamiglia M, Espinal A, Valero O, Ramirez-Mendoza H, Minguez A, Serrano JM, Marin O, Callén A, Segalés J (2011) Post-weaning multisystemic wasting syndrome (PMWS) clinical expression under field conditions is modulated by the pig genetic background. Vet Microbiol 149(3–4):352–357PubMedCrossRefGoogle Scholar
  85. Madson DM, Ramamoorthy S, Kuster C, Pal N, Meng XJ, Halbur PG, Opriessnig T (2008) Characterization of shedding patterns of porcine circovirus types 2a and 2b in experimentally inoculated mature boars. J Vet Diagn Investig 20(6):725–734CrossRefGoogle Scholar
  86. Mandrioli L, Sarli G, Panarese S, Baldoni S, Marcato PS (2004) Apoptosis and proliferative activity in lymph node reaction in postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol 97(1–2):25–37PubMedCrossRefGoogle Scholar
  87. Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P, Mueller B, Schmitt C, Steinfeldt T, Finsterbusch T (2004) Molecular biology of porcine circovirus: analyses of gene expression and viral replication. Vet Microbiol 98(2):81–88PubMedCrossRefGoogle Scholar
  88. Mateusen B, Maes DG, Van Soom A, Lefebvre D, Nauwynck HJ (2007) Effect of a porcine circovirus type 2 infection on embryos during early pregnancy. Theriogenology 68(6):896–901PubMedCrossRefPubMedCentralGoogle Scholar
  89. McIntosh KA, Harding JC, Parker S, Ellis JA, Appleyard GD (2006) Nested polymerase chain reaction detection and duration of porcine circovirus type 2 in semen with sperm morphological analysis from naturally infected boars. J Vet Diagn Investig 18(4):380–384CrossRefGoogle Scholar
  90. McNeilly F, Kennedy S, Moffett D, Meehan BM, Foster JC, Clarke EG, Ellis JA, Haines DM, Adair BM, Allan GM (1999) A comparison of in situ hybridization and immunohistochemistry for the detection of a new porcine circovirus in formalin-fixed tissues from pigs with post-weaning multisystemic wasting syndrome (PMWS). J Virol Methods 80(2):123–128PubMedCrossRefPubMedCentralGoogle Scholar
  91. Meehan BM, McNeilly F, Todd D, Kennedy S, Jewhurst VA, Ellis JA, Hassard LE, Clark EG, Haines DM, Allan GM (1998) Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 79(Pt 9):2171–2179PubMedCrossRefGoogle Scholar
  92. Misinzo G, Meerts P, Bublot M, Mast J, Weingartl HM, Nauwynck HJ (2005) Binding and entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol 86(7):2057–2068PubMedCrossRefPubMedCentralGoogle Scholar
  93. Misinzo G, Delputte PL, Meerts P, Lefebvre DJ, Nauwynck HJ (2006) Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol 80(7):3487–3494PubMedPubMedCentralCrossRefGoogle Scholar
  94. Misinzo G, Delputte PL, Nauwynck HJ (2008) Inhibition of endosome-lysosome system acidification enhances porcine circovirus 2 infection of porcine epithelial cells. J Virol 82(3):1128–1135PubMedCrossRefGoogle Scholar
  95. Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ (2009) Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 139(1):1–9PubMedCrossRefGoogle Scholar
  96. Mukherjee P, Karam A, Barkalita L, Borah P, Chakraborty AK, Das S, Puro K, Sanjukta R, Ghatak S, Shakuntala I, Laha RG (2018a) Porcine circovirus 2 in the North Eastern region of India: disease prevalence and genetic variation among the isolates from areas of intensive pig rearing. Acta Trop 182:166–172PubMedCrossRefGoogle Scholar
  97. Mukherjee P, Karam A, Singh U, Chakraborty AK, Huidrom S, Sen A, Sharma I (2018b) Seroprevalence of selected viral pathogens in pigs reared in organized farms of Meghalaya from 2014 to 16. Vet World 11(1):42–47PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nattrat T, Sangthong P, Poolperm P, Thanantong N, Boonsoongnem A, Hansoongnem P, Semkum P, Petcharat N, Lekcharoensuk P (2017) Genetic diversity of porcine circovirus type 2 (PCV2) in Thailand during 2009-2015. Vet Microbiology 208:239–246Google Scholar
  99. Olvera A, Cortey M, Segalés J (2007) Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality. Virology 357:175–185PubMedCrossRefGoogle Scholar
  100. Opriessnig T, Halbur PG (2012) Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 164:20–32PubMedCrossRefGoogle Scholar
  101. Opriessnig T, Thacker EL, Yu S, Fenaux M, Meng XJ, Halbur PG (2004) Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneamoniae and porcine circovirus type 2. Vet Pathol 41(6):624–640PubMedCrossRefGoogle Scholar
  102. Opriessnig T, Fenaux M, Thomas P, Hoogland MJ, Rothschild MF, Meng XJ, Halbur PG (2006a) Evidence of breed-dependent differences in susceptibility to porcine circovirus type-2-associated disease and lesion. Vet Pathol 43(3):281–293PubMedCrossRefGoogle Scholar
  103. Opriessnig T, Kuster C, Halbur PG (2006b) Demonstration of porcine circovirus type 2 in the testes and accessory sex glands of a boar. J Swine Health Prod 14(1):42–45Google Scholar
  104. Opriessnig T, Janke BH, Halbur PG (2006c) Cardiovascular lesions in pigs naturally or experimentally infected with porcine circovirus type 2. J Comp Pathol 134(1):105–110PubMedCrossRefGoogle Scholar
  105. Opriessnig T, Meng XJ, Halbur PG (2007) Porcine circovirus type 2–associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Investig 19(6):591–615CrossRefGoogle Scholar
  106. Opriessnig T, Patterson AR, Elsener J, Meng XJ, Halbur PG (2008) Influence of maternal antibodies on efficacy of porcine circovirus type 2 (PCV2) vaccination to protect pigs from experimental infection with PCV2. Clin Vaccine Immunol 15(3):397–401PubMedCrossRefGoogle Scholar
  107. Opriessnig T, O’Neill K, Gerber PF, de Castro AM, Giminez-Lirola LG, Beach NM, Zhou L, Meng XJ, Wang C, Halbur PG (2013) A PCV2 vaccine based on genotype 2b is more effective than a 2a-based vaccine to protect against PCV2b or combined PCV2a/2b viremia in pigs with concurrent PCV2, PRRSV and PPV infection. Vaccine 31(3):487–494PubMedCrossRefPubMedCentralGoogle Scholar
  108. Opriessnig T, Gerber PF, Xiao C-T, Halbur PG, Matzinger SR, Meng X-J (2014a) Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2. Vaccine 32:4342–4348PubMedCrossRefGoogle Scholar
  109. Opriessnig T, Gerber PF, Xiao C-T, Mogler M, Halbur PG (2014b) A commercial vaccine based on PCV2a and an experimental vaccine based on a variant mPCV2b are both effective in protecting pigs against challenge with a 2013 U.S. variant mPCV2b strain. Vaccine 32:230–237PubMedCrossRefGoogle Scholar
  110. Opriessnig T, Xiao CT, Halbur PG, Gerber PF, Matzinger SR, Meng XJ (2017) A commercial porcine circovirus (PCV) type 2a-based vaccine reduces PCV2d viremia and shedding and prevents PCV2d transmission to naïve pigs under experimental conditions. Vaccine 35(2):248–254PubMedPubMedCentralCrossRefGoogle Scholar
  111. Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, Byers E, Hause BM (2017) A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. J Virol 91(1):e01879–e01816PubMedCrossRefGoogle Scholar
  112. Patterson AR, Johnson J, Ramamoorthy S, Meng XJ, Halbur PG, Opriessnig T (2008) Comparison of three enzyme-linked immunosorbent assays to detect porcine Circovirus-2 (PCV-2)—specific antibodies after vaccination or inoculation of pigs with distinct PCV-1 or PCV-2 isolates. J Vet Diagn Investig 20(6):744–751CrossRefGoogle Scholar
  113. Pegu SR, Sarma DK, Rajkhowa S, Choudhury M (2017) Sero-prevelance and pathology of important viral pathogens causing reproductive problems in domestic pigs of NE IndiaGoogle Scholar
  114. Park JS, Kim J, Ha Y, Jung K, Choi C, Lim JK, Kim SH, Chae C (2005) Birth abnormalities in pregnant sows infected intranasally with porcine circovirus 2. J Comp Pathol 132(2–3):139–144PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pensaert MB, Sánchez RE Jr, Ladekjaer-Mikkelsen AS, Allan GM, Nauwynck HJ (2004) Viremia and effect of fetal infection with porcine viruses with special reference to porcine circovirus 2 infection. Vet Microbiol 98(2):175–183PubMedCrossRefGoogle Scholar
  116. Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson TP, Li L, Deng X, Resende T, Vannucci F, Delwart E (2016) Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J 13:184Google Scholar
  117. Rodríguez-Cariño C, Duffy C, Sánchez-Chardi A, McNeilly F, Allan GM, Segalés J (2011) Porcine circovirus type 2 morphogenesis in a clone derived from the l35 lymphoblastoid cell line. J Comp Pathol 144(2–3):91–102PubMedCrossRefPubMedCentralGoogle Scholar
  118. Rose N, Opriessnig T, Grasland B, Jestin A (2012) Epidemiology and transmission of porcine circovirus type 2 (PCV2). Virus Res 164:78–89PubMedCrossRefPubMedCentralGoogle Scholar
  119. Rosell C, Segalés J, Plana-Duran J, Balasch M, Rodrıguez-Arrioja GM, Kennedy S, Allan GM, McNeilly F, Latimer KS, Domingo M (1999) Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol 120(1):59–78PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rosell C, Segalés J, Ramos-Vara JA, Folch JM, Rodríguez-Arrioja GM, Duran CO, Balasch M, Plana-Duran J, Domingo M (2000) Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec 146(2):40–43PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sánchez RE Jr, Nauwynck HJ, McNeilly F, Allan GM, Pensaert MB (2001) Porcine circovirus 2 infection in swine foetuses inoculated at different stages of gestation. Vet Microbiol 83(2):169–176PubMedCrossRefPubMedCentralGoogle Scholar
  122. Saraiva GL, Vidigal PMP, Fietto JLR, Bressan GC, Júnior AS, de Almeida MR (2018) Evolutionary analysis of porcine circovirus 3 (PCV3) indicates an ancient origin for its current strains and a worldwide dispersion. Virus Genes:1–9Google Scholar
  123. Seeliger FA, Brugmann ML, Kruger L, Greiser-Wilke I, Verspohl J, Segalés J, Baumgartner W (2007) Porcine circovirus type 2-associated cerebellar vasculitis in postweaning multisystemic wasting syndrome (PMWS)-affected pigs. Vet Pathol 44(5):621–634PubMedCrossRefPubMedCentralGoogle Scholar
  124. Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 164(1–2):10–19PubMedCrossRefPubMedCentralGoogle Scholar
  125. Segalés J, Domingo M (2002) Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q 24(3):109–124PubMedCrossRefPubMedCentralGoogle Scholar
  126. Segalés J, Piella J, Marco E, Mateu-de-Antonio EM, Espuna E, Domingo M (1998) Porcine dermatitis and nephropathy syndrome in Spain. Vet Rec 142(18):483–486PubMedCrossRefGoogle Scholar
  127. Segalés J, Rosell C, Domingo M (2004) Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol 98(2):137–149PubMedCrossRefGoogle Scholar
  128. Segalés J, Allan GM, Domingo M (2005) Porcine circovirus diseases. Anim Health Res Rev 6(2):119–142PubMedCrossRefPubMedCentralGoogle Scholar
  129. Segalés J, Olvera A, Grau-Roma L, Charreyre C, Nauwynck H, Larsen L, Dupont K, McCullough K, Ellis J, Krakowka S, Mankertz A, Fredholm M, Fossum C, Timmusk S, Stockhofe-Zurwieden N, Beattie V, Armstrong D, Grassland B, Baekbo P, Allan G (2008) PCV-2 genotype definition and nomenclature. Vet Rec 162:867–868PubMedCrossRefGoogle Scholar
  130. Segalés J, Kekarainen T, Cortey M (2013) The natural history of porcine circovirus type 2: from an inoffensive virus to a devastating swine disease? Vet Microbiol 165(1–2):13–20PubMedCrossRefGoogle Scholar
  131. Sharma R, Saikumar G (2010) Porcine parvovirus-and porcine circovirus 2-associated reproductive failure and neonatal mortality in crossbred Indian pigs. Trop Anim Health Prod 42(3):515–522PubMedCrossRefPubMedCentralGoogle Scholar
  132. Shen HG, Loiacono CM, Halbur PG et al (2012) Age-dependent susceptibility to porcine circovirus type 2 infections is likely associated with declining levels of maternal antibodies. J Swine Health Prod 20(1):17–24Google Scholar
  133. Shen H, Liu X, Zhang P, Wang L, Liu Y, Zhang L, Liang P, Song C (2017) Genome characterization of a porcine circovirus type 3 in South China. Transbound Emerg Dis 65(1):264–266. Scholar
  134. Shibata I, Okuda Y, Kitajima K, Asai T (2006) Shedding of porcine circovirus into colostrum of sows. J Vet Med B Infect Dis Vet Public Health 53(6):278–280PubMedCrossRefGoogle Scholar
  135. Sorden SD, Harms PA, Nawagitgul P, Cavanaugh D, Paul PS (1999) Development of a polyclonal-antibody-based immunohistochemical method for the detection of type 2 porcine circovirus in formalin-fixed, paraffin-embedded tissue. J Vet Diagn Investig 11(6):528–530CrossRefGoogle Scholar
  136. Stadejek T, Woźniak A, Miłek D, Biernacka K (2017) First detection of porcine circovirus type 3 on commercial pig farms in Poland. Transbound Emerg Dis 64(5):1350–1353PubMedCrossRefPubMedCentralGoogle Scholar
  137. Stevenson GW, Kiupel M, Mittal SK, Choi J, Latimer KS, Kanitz CL (2001) Tissue distribution and genetic typing of porcine circoviruses in pigs with naturally occurring congenital tremors. J Vet Diagn Investig 13(1):57–62CrossRefGoogle Scholar
  138. Tang Q, Li S, Zhang H, Wei Y, Wu H, Liu J, Wang Y, Liu D, Zhang Z, Liu C (2013) Correlation of the cyclin A expression level with porcine circovirus type 2 propagation efficiency. Arch Virol 158(12):2553–2560PubMedCrossRefPubMedCentralGoogle Scholar
  139. Tischer I, Rasch R, Tochtermann G, Zentralbl Bakteriol Orig A (1974) Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. 226(2):153–167Google Scholar
  140. Tischer I, Mields W, Wolff D, Vagt M, Griem W (1986) Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol 91(3–4):271–276PubMedCrossRefGoogle Scholar
  141. Tischer I, Peters D, Rasch R, Pociuli S (1987) Replication of porcine circovirus: induction by glucosamine and cell cycle dependence. Arch Virol 96(1–2):39–57PubMedCrossRefPubMedCentralGoogle Scholar
  142. Tischer I, Bode L, Apodaca J, Timm H, Peters D, Rasch R, Pociuli S, Gerike E (1995) Presence of antibodies reacting with porcine circovirus in sera of humans, mice, and cattle. Arch Virol 140:1427–1439PubMedCrossRefPubMedCentralGoogle Scholar
  143. Verreault D, Létourneau V, Gendron L, Massé D, Gagnon CA, Duchaine C (2010) Airborne porcine circovirus in Canadian swine confinement buildings. Vet Microbiol 141(3–4):224–230PubMedCrossRefPubMedCentralGoogle Scholar
  144. Vincent IE, Carrasco CP, Herrmann B, Meehan BM, Allan GM, Summerfield A, McCullough KC (2003) Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 77(24):13288–13300PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vincent IE, Balmelli C, Meehan B, Allan G, Summerfield A, McCullough KC (2007) Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology 120(1):47–56PubMedPubMedCentralCrossRefGoogle Scholar
  146. Walker IW, Konoby CA, Jewhurst VA, McNair I, McNeilly F, Meehan BM, Cottrell TS, Ellis JA, Allan GM (2000) Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Investig 12(5):400–405CrossRefGoogle Scholar
  147. Wang F, Guo X, Ge X, Wang Z, Chen Y, Cha Z, Yang H (2009) Genetic variation analysis of Chinese strains of porcine circovirus type 2. Virus Res 145:151–156PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wang X, Li W, Xu X, Wang W, He K, Fan H (2018) Phylogenetic analysis of two goat-origin PCV2 isolates in China. Gene 651:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  149. Wei L, Zhu S, Wang J, Liu J (2012) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway during porcine circovirus type 2 infection facilitates cell survival and viral replication. J Virol 86(24):13589–13597PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wei L, Zhu S, Wang J, Zhang C, Quan R, Yan X, Liu J (2013) Regulatory role of ASK1 in porcine circovirus type 2-induced apoptosis. Virology 447(1–2):285–291PubMedCrossRefPubMedCentralGoogle Scholar
  151. West KH, Bystrom JM, Wojnarowicz C, Shantz N, Jacobson M, Allan GM, Haines DM, Clark EG, Krakowka S, McNeilly F, Konoby C, Martin K, Ellis JA (1999) Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. J Vet Diagn Investig 11(6):530–532CrossRefGoogle Scholar
  152. Xiao CT, Halbur PG, Opriessnig T (2015) Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J Gen Virol 96:1830–1841PubMedCrossRefPubMedCentralGoogle Scholar
  153. Xiao CT, Harmon KM, Halbur PG, Opriessnig T (2016) PCV2d-2 is the predominant type of PCV2 DNA in pig samples collected in the US during 2014–2016. Vet Microbiol 197:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  154. Xu XG, Chen GD, Huang Y, Ding L, Li ZC, Chang CD, Wang CY, Tong DW, Liu HJ (2012) Development of multiplex PCR for simultaneous detection of six swine DNA and RNA viruses. J Virol Methods 183(1):6CrossRefGoogle Scholar
  155. Yang X, Hou L, Ye J, He Q, Cao S (2012) Detection of porcine circovirus type 2 (PCV2) in mosquitoes from pig farms by PCR. Pak Vet J 32:134–135Google Scholar
  156. Ye X, Berg M, Fossum C, Wallgren P, Blomström AL (2018) Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. Virus genes:1–4Google Scholar
  157. Young MG, Cunningham GL, Sanford SE (2011) Circovirus vaccination in pigs with subclinical porcine circovirus type 2 infection complicated by ileitis. J Swine Health Prod 19(3):175–180Google Scholar
  158. Yu S, Opriessnig T, Kitikoon P, Nilubol D, Halbur PG, Thacker E (2007) Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs. Vet Immunol Immunopathol 115(3–4):261–272PubMedCrossRefPubMedCentralGoogle Scholar
  159. Yu S, Halbur PG, Thacker E (2009) Effect of porcine circovirus type 2 infection and replication on activated porcine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol 127(3–4):350–356PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yuzhang S, Dai Y, Yin R (2016) Prevalence and epidemiological analysis of porcine circovirus type 2 in China from 2013 to 2015. J of Appl Virol 5(1). Scholar
  161. Zhai SL, Chen SN, Wei ZZ, Zhang JW, Huang L, Lin T, Yue C, Ran DL, Yuan SS, Wei WK, Long JX (2011) Co-existence of multiple strains of porcine circovirus type 2 in the same pig from China. Virol J 8:517PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhai SL, Chen SN, Zhang JW, Wei ZZ, Long JX, Yuan SS, Wei WK, Chen QL, Xuan H, Wu DC (2012) Dissection of the possible routes on porcine circoviruses infecting human. J Anim Vet Adv 11:1281–1286CrossRefGoogle Scholar
  163. Zhai SL, Chen SN, Xu ZH, Tang MH, Wang FG, Li XJ, Sun BB, Deng SF, Hu J, Lv DH, Wen XH (2014) Porcine circovirus type 2 in China: an update on and insights to its prevalence and control. Virol J 11(1):88PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zhai SL, Chen SN, Liu W, Li XP, Deng SF, Wen XH, Luo ML, Lv DH, Wei WK, Chen RA (2016) Molecular detection and genome characterization of porcine circovirus type 2 in rats captured on commercial swine farms. Arch Virol 161(11):3237–3244PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zhai SL, Zhou X, Lin T, Zhang H, Wen XH, Zhou XR, Jia CL, Tu D, Zhu XL, Chen QL, Wei WK (2017) Reappearance of buffalo-origin-like porcine circovirus type 2 strains in swine herds in southern China. New Microbes New Infect 17:98–100PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang L, Luo Y, Liang L, Li J, Cui S (2018) Phylogenetic analysis of porcine circovirus type 3 and porcine circovirus type 2 in China detected by duplex nanoparticle-assisted PCR. Infect Genet Evol 60:1–6PubMedCrossRefGoogle Scholar
  167. Zhao K, Han F, Zou Y, Zhu L, Li C, Xu Y, Zhang C, Tan F, Wang J, Tao S, He X (2010) Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR. Virol J 7(1):374PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zheng S, Wu X, Zhang L, Xin C, Liu Y, Shi J, Peng Z, Xu S, Fu F, Yu J, Sun W, Xu S, Li J, Wang J (2017) The occurrence of porcine circovirus 3 without clinical infection signs in Shandong province. Transbound Emerg Dis 64(5):1337–1341PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • G. Saikumar
    • 1
  • Tareni Das
    • 1
  1. 1.Division of PathologyICAR-Indian Veterinary Research Institute (ICAR-IVRI)IzatnagarIndia

Personalised recommendations