Mycotoxin Immunoassay in Food

  • Chuanlai XuEmail author
  • Hua Kuang
  • Liguang Xu


This chapter introduces the overview of mycotoxins containing the characteristics, classification, hazard, and the maximum residue levels in the world. Then the synthetic method of special haptens and antigens was depicted in this chapter. The acquired antibodies based on different antigens have the distinct properties in sensitivity and specificity. The sensitivity and cross-reactivities of obtained antibodies were analyzed via the enzyme-linked immunosorbent assay to provide the basis for hapten design. And the pretreatment methods of different typical samples for ELISA method were presented. Then the colloidal gold immunochromatographic strips based on mycotoxins’ antibodies were described briefly with the principle, the detection ranges, and cut-off values. Finally, the perspective of immnunoassays for mycotoxins analysis was discussed. As a kind of natural product, many kinds of mycotoxins are still being discovered. Therefore, to find the effective synthesis methods of antigenic for antibody preparation is the key driving force for mycotoxin immunoassays.


  1. 1.
    Binder EM, Tan LM, Chin LJ, Handl J, Richard J (2007) Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim Feed Sci Technol 137(3):265–282CrossRefGoogle Scholar
  2. 2.
    Bullerman LB, Bianchini A (2007) Stability of mycotoxins during food processing. Int J Food Microbiol 119(1):140–146PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett JW (2003) Mycotoxins. Clin Microbiol Rev 16(3):497PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kujawa M (2010) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Mol Nutr Food Res 38(3):351Google Scholar
  5. 5.
    Mantle PG (2002) Risk assessment and the importance of ochratoxins. Int Biodeterior Biodegradation 50(3):143–146CrossRefGoogle Scholar
  6. 6.
    Magnoli CE, Astoreca AL, Chiacchiera SM, Dalcero AM (2007) Occurrence of ochratoxin A and ochratoxigenic mycoflora in corn and corn based foods and feeds in some South American countries. Mycopathologia 163(5):249–260PubMedCrossRefGoogle Scholar
  7. 7.
    Stoev SD (2013) Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit Rev Food Sci Nutr 53(9):887–901PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by fusarium species. Appl Environ Microbiol 68(5):2101–2105PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ostry V, Malir F, Toman J, Grosse Y (2017) Mycotoxins as human carcinogens—the IARC monographs classification. Mycotoxin Res 33(1):65–73CrossRefGoogle Scholar
  10. 10.
    Voss KA, Smith GW, Haschek WM (2007) Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 137(3):299–325CrossRefGoogle Scholar
  11. 11.
    Reddy KRN, Nurdijati S, Salleh B (2010) An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian J Plant Sci 9(3):126–133CrossRefGoogle Scholar
  12. 12.
    Valdez B (2012) Food industrial processes—methods and equipment. Physical and chemical characteristics of tropical and non-conventional fruits. Food Ind. (Chapter 1)Google Scholar
  13. 13.
    Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87(3):899–911PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Richard JL (2007) Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 119(1):3–10PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Versilovskis A, De SS (2010) Sterigmatocystin: occurrence in foodstuffs and analytical methods—an overview. Mol Nutr Food Res 54(1):136–147PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kövesi B, Balogh K, Pelyhe C, Mézes M, Kövesi B, Balogh K, Pelyhe C, Mézes M (2017) Toxic effects of sterigmato-cystin mycotoxin in animals: literature review. Magyar Allatorvosok Lapja 139(7):427–432Google Scholar
  17. 17.
    Blanc PJ, Loret MO, Goma G (1995) Production of citrinin by various species of Monascus. Biotech Lett 17(3):291–294CrossRefGoogle Scholar
  18. 18.
    Li Y, Zhou Y-C, Yanga M-H (2012) Natural occurrence of citrinin in widely consumed traditional Chinese food red yeast rice, medicinal plants and their related products. Food Chem 132(2):1040–1045CrossRefGoogle Scholar
  19. 19.
    Singh ND, Sharma AK, Dwivedi P, Patil RD, Kumar M (2010) Citrinin and endosulfan induced teratogenic effects in Wistar rats. J Appl Toxicol 27(2):143–151CrossRefGoogle Scholar
  20. 20.
    Rašić D, Stefanović S, Milićević D, Peraica M (2015) Ochratoxin A stimulates citrinin accumulation in rat kidney and liver. Toxicol Lett 238(2):S264–S264CrossRefGoogle Scholar
  21. 21.
    Montemurro N, Visconti A (1992) Alternaria metabolites—chemical and biological data. Alternaria Biol Plant Dis Metabolites 449–557Google Scholar
  22. 22.
    Solhaug A, Eriksen GS, Holme JA (2016) Mechanisms of action and toxicity of the mycotoxin alternariol: a review. Basic Clin Pharmacol Toxicol 119(6):533–539PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Asam S, Lichtenegger M, Muzik K, Liu Y, Frank O, Hofmann T, Rychlik M (2013) Development of analytical methods for the determination of tenuazonic acid analogues in food commodities. J Chromatogr A 1289(6):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Glister GA (1941) A new antibacterial agent produced by a mould. Nature 148:470CrossRefGoogle Scholar
  25. 25.
    Melo FTD, Oliveira IMD, Greggio S, Dacosta JC, Guecheva TN, Saffi J, Henriques JAP, Rosaa RM (2012) DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food Chem Toxicol Int J 50(10):3548–3555 (Published for the British Industrial Biological Research Association)Google Scholar
  26. 26.
    Mohan HM, Collins D, Maher S, Walsh EG, Winter DC, O’Brien PJ, Brayden DJ, Baird AW (2012) The mycotoxin patulin increases colonic epithelial permeability in vitro. Food Chem Toxicol 50(11):4097–4102PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Riley RT, Showker JL (1991) The mechanism of patulin’s cytotoxicity and the antioxidant activity of indole tetramic acids. Toxicol Appl Pharmacol 109(1):108–126PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhang X, Feng M, Liu L, Xing C, Kuang H, Peng C, Wang L, Xu C (2013) Detection of aflatoxins in tea samples based on a class-specific monoclonal antibody. Int J Food Sci Technol 48(6):1269–1274CrossRefGoogle Scholar
  29. 29.
    Li M, Li P, Wu H, Zhang Q, Ma F, Zhang Z, Ding X, Wang H (2014) An ultra-sensitive monoclonal antibody-based competitive enzyme immunoassay for sterigmatocystin in cereal and oil products. Plos One 9(9). Scholar
  30. 30.
    Chu FS, Ueno I (1977) Production of antibody against aflatoxin B1. Appl Environ Microbiol 33(5):1125–1128PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Sun M, Kang Y, Xie H, Wang X, Song H, Li X, Fang W (2015) Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay. Toxicon 106:89–96PubMedCrossRefGoogle Scholar
  32. 32.
    Xiao H, Clarke JR, Marquardt RR, Frohlich AA (1995) Improved methods for conjugating selected mycotoxins to carrier proteins and dextran for immunoassays. Jagricfood Chem 43(8):2092–2097Google Scholar
  33. 33.
    Li Y, Zhang J, Wang Y, Mao X, Liu H, Sun C, Liu Y, Gao Y, Zhang Z, An X (2017) Immunity theory-based high-specific monoclonal antibody preparation and application of fumonisin B 1. Food Anal Methods 13:1–7Google Scholar
  34. 34.
    Ling S, Jie P, Yu J, Wang R, Liu L, Ma Y, Zhang Y, Ni J, Wang S (2014) Preparation and identification of monoclonal antibody against fumonisin B 1 and development of detection by Ic-ELISA. Toxicon 80(3):64–72PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Maragos CM, McCormick SP (2000) Monoclonal antibodies for the mycotoxins deoxynivalenol and 3-acetyl-deoxynivalenol. Food Agric Immunol 12(3):181–192CrossRefGoogle Scholar
  36. 36.
    Thouvenot D, Morfin RF (1983) Radioimmunoassay for zearalenone and zearalanol in human serum: production, properties, and use of porcine antibodies. Appl Environ Microbiol 45(1):16–23PubMedPubMedCentralGoogle Scholar
  37. 37.
    Li ZK, Song SS, Xu LG, Kuang H, Guo SD, Xu CL (2013) Development of an ultrasensitive immunoassay for detecting tartrazine. Sensors 13(7):8155–8169PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu R, Yu Z, He Q, Xu Y (2007) Preparation and identification of a monoclonal antibody against citrinin. J Hygiene Res 36(2):190Google Scholar
  39. 39.
    Duan ZH, Lin ZS, Yao HR, Gao YH, Zhang K, Zhao SQ, Zhu ZY (2009) Preparation of artificial antigen and egg yolk-derived immunoglobulin (IgY) of citrinin for enzyme-linked immunosorbent assay. Biomed Environ Sci 22(3):237–243PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ackermann Y, Curtui V, Dietrich R, Gross M, Latif H, Märtlbauer E, Usleber E (2011) Widespread occurrence of low levels of alternariol in apple and tomato products, as determined by comparative immunochemical assessment using monoclonal and polyclonal antibodies. J Agric Food Chem 59(12):6360–6368PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gross M, Curtui V, Ackermann Y, Latif H, Usleber E (2011) Enzyme immunoassay for tenuazonic acid in apple and tomato products. J Agric Food Chem 59(23):12317–12322PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    de Champdore M, Bazzicalupo P, De Napoli L, Montesarchio D, Di Fabio G, Cocozza I, Parracino A, Rossi M, D’Auria S (2007) A new competitive fluorescence assay for the detection of patulin toxin. Anal Chem 79(2):751–757Google Scholar
  43. 43.
    Fu X, Wang A, Wang X, Lin F, He L, Lai D, Liu Y, Li QX, Zhou L, Wang B (2015) Development of a monoclonal antibody-based icELISA for the detection of ustiloxin B in rice false smut balls and rice grains. Toxins 7(9):3481–3496PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yu W, Chu FS (1998) Improved direct competitive enzyme-linked immunosorbent assay for cyclopiazonic acid in corn, peanuts, and mixed feed. J Agric Food Chem 46(3):1012–1017CrossRefGoogle Scholar
  45. 45.
    Jin N, Ling S, Yang C, Wang S (2014) Preparation and identification of monoclonal antibody against citreoviridin and development of detection by Ic-ELISA. Toxicon 90:226–236PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Shelby RA, Kelley VC (1990) An immunoassay for ergotamine and related alkaloids. J Agric Food Chem 38(4):58–61CrossRefGoogle Scholar
  47. 47.
    Lei HY, He ZP, Hui Y, Jing W, Wen LX, Li RF, Ming Z, Yuan LY, Yuan ZH (2010) Generation and characterization of a monoclonal antibody to penicillic acid from penicillium cyclopium. Afr J Biotech 9(21):3026–3031Google Scholar
  48. 48.
    Liu J, Meng ZH (1998) Production and characterization of monoclonal antibodies against fumitremorgin B. Biomed Environ Sci 11(4):336–344Google Scholar
  49. 49.
    Tang X, Li P, Zhang Z, Zhang Q, Guo J, Zhang W (2017) An ultrasensitive gray-imaging-based quantitative immunochromatographic detection method for fumonisin B 1 in agricultural products. Food Control 80:333–340CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations