Advertisement

Pharmacokinetics and Pharmacodynamics of Polyphenols

  • Muddasarul Hoda
  • Shanmugam Hemaiswarya
  • Mukesh Doble
Chapter

Abstract

Polyphenols possess numerous biological effects but have low oral bioavailability since they are extensively metabolized by phase 1 (CYP P450 family) and phase 2 (UDP-glucuronosyltransferases, sulfotransferases) enzymes in the enterocytes, liver, and also by gut microbiota. In addition they also have poor aqueous solubility. Bioavailability and pharmacodynamic action of the polyphenol and its metabolites are dependent on the interaction between the transporter proteins, metabolic enzymes, gut microbiota, host factors, source, and properties of the polyphenol.

Keywords

Bioavailability Gut microbiota Transporter proteins Phase 1 metabolism Phase 2 metabolism Pharmacokinetic parameters 

References

  1. Aggarwal BB, Deb L, Prasad S (2014) Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20:185–205.  https://doi.org/10.3390/molecules20010185 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alfaras I, Perez M, Juan ME et al (2010) Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice. J Agric Food Chem 58:4523–4528.  https://doi.org/10.1021/jf9042858 CrossRefPubMedGoogle Scholar
  3. Alvarez AI, Vallejo F, Barrera B et al (2011) Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos 39:2008–2012.  https://doi.org/10.1124/dmd.111.040881 CrossRefPubMedGoogle Scholar
  4. Amaretti A, Raimondi S, Leonardi A et al (2015) Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 7:2788–2800.  https://doi.org/10.3390/nu7042788 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ana C-Y, Sun Z-Z, Shen L, Jia H-F (2017) Biotransformation of food spice curcumin by gut bacterium Bacillus megaterium DCMB-002 and its pharmacological implications. Food Nutr Res 61Google Scholar
  6. Araujo KCF, de M B Costa EM, Pazini F et al (2013) Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products. Food Chem Toxicol 51:93–96.  https://doi.org/10.1016/j.fct.2012.09.015 CrossRefPubMedGoogle Scholar
  7. Aumont V, Krisa S, Battaglia E et al (2001) Regioselective and stereospecific glucuronidation of trans- and cis-resveratrol in human. Arch Biochem Biophys 393:281–289.  https://doi.org/10.1006/abbi.2001.2496 CrossRefPubMedGoogle Scholar
  8. Brand W, Boersma MG, Bik H et al (2010) Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos 38:617–625.  https://doi.org/10.1124/dmd.109.031047 CrossRefPubMedGoogle Scholar
  9. Brill SS, Furimsky AM, Ho MN et al (2006) Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms. J Pharm Pharmacol 58:469–479.  https://doi.org/10.1211/jpp.58.4.0006 CrossRefPubMedGoogle Scholar
  10. Celik G, Semiz A, Karakurt S, et al (2013) A comparative study for the evaluation of two doses of ellagic acid on hepatic drug metabolizing and antioxidant enzymes in the rat. Biomed Res Int 2013: 358945. doi: https://doi.org/10.1155/2013/358945, 1Google Scholar
  11. Chalet C, Rubbens J, Tack J et al (2018) Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers. J Pharm Pharmacol 70:1002–1008.  https://doi.org/10.1111/jphp.12929 CrossRefPubMedGoogle Scholar
  12. Chen J, Lin H, Hu M (2005a) Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol 55:159–169.  https://doi.org/10.1007/s00280-004-0842-x CrossRefPubMedGoogle Scholar
  13. Chen J, Wang S, Jia X et al (2005b) Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos 33:1777–1784.  https://doi.org/10.1124/dmd.105.003673 CrossRefPubMedGoogle Scholar
  14. Chow H-HS, Garland LL, Hsu C-H et al (2010) Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila) 3:1168–1175.  https://doi.org/10.1158/1940-6207.CAPR-09-0155 CrossRefGoogle Scholar
  15. Cook I, Wang T, Girvin M, Leyh TS (2016) The structure of the catechin-binding site of human sulfotransferase 1A1. Proc Natl Acad Sci U S A 113:14312–14317.  https://doi.org/10.1073/pnas.1613913113 CrossRefPubMedPubMedCentralGoogle Scholar
  16. D’Archivio M, Filesi C, Varì R et al (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342.  https://doi.org/10.3390/ijms11041321 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davis BD, Brodbelt JS (2008) Regioselectivity of human UDP-glucuronosyl-transferase 1A1 in the synthesis of flavonoid glucuronides determined by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom 19:246–256.  https://doi.org/10.1016/j.jasms.2007.11.004 CrossRefPubMedGoogle Scholar
  18. Day AJ, Canada FJ, Diaz JC et al (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468:166–170CrossRefGoogle Scholar
  19. Day AJ, Gee JM, DuPont MS et al (2003) Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 65:1199–1206CrossRefGoogle Scholar
  20. Erk T, Hauser J, Williamson G et al (2014) Structure- and dose-absorption relationships of coffee polyphenols. Biofactors 40:103–112.  https://doi.org/10.1002/biof.1101 CrossRefPubMedGoogle Scholar
  21. Fale PL, Ascensao L, Serralheiro MLM (2013) Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers. Food Funct 4:426–431.  https://doi.org/10.1039/c2fo30318c CrossRefPubMedGoogle Scholar
  22. Feliciano RP, Mills CE, Istas G et al (2017) Absorption, metabolism and excretion of cranberry (Poly)phenols in humans: a dose response study and assessment of inter-individual variability. Nutrients 9:268.  https://doi.org/10.3390/nu9030268 CrossRefPubMedCentralGoogle Scholar
  23. Feng X, Li Y, Guang C et al (2018) Characterization of the in vivo and in vitro metabolites of linarin in rat biosamples and intestinal flora using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Molecules 23.  https://doi.org/10.3390/molecules23092140 CrossRefGoogle Scholar
  24. Fiesel A, Gessner DK, Most E, Eder K (2014) Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet Res 10:196.  https://doi.org/10.1186/s12917-014-0196-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gao M, Tang X, Zhang F et al (2018) Biotransformation and metabolic profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, with rat intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry ana. Biomed Chromatogr 32:e4160.  https://doi.org/10.1002/bmc.4160 CrossRefGoogle Scholar
  26. García-Villalba R, Vissenaekens H, Pitart J et al (2017) Gastrointestinal simulation model TWIN-SHIME shows differences between human Urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J Agric Food Chem 65:5480–5493.  https://doi.org/10.1021/acs.jafc.7b02049 CrossRefPubMedGoogle Scholar
  27. Ge Z, Dong X, Zhu W et al (2015) Metabolites and changes in antioxidant activity of A-Type and B-Type proanthocyanidin dimers after incubation with rat intestinal microbiota. J Agric Food Chem 63:8991–8998.  https://doi.org/10.1021/acs.jafc.5b03657 CrossRefPubMedGoogle Scholar
  28. Gheldof N, Moco S, Chabert C et al (2017) Role of sulfotransferases in resveratrol metabolism in human adipocytes. Mol Nutr Food Res 61.  https://doi.org/10.1002/mnfr.201700020 CrossRefGoogle Scholar
  29. Ginsburg I, Kohen R, Koren E (2013) Saliva: a ‘solubilizer’ of lipophilic antioxidant polyphenols. Oral Dis 19CrossRefGoogle Scholar
  30. Ginsburg I, Koren E, Shalish M et al (2012) Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Arch Oral Biol 57CrossRefGoogle Scholar
  31. Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M (2011) Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci U S A 108:6615–6620.  https://doi.org/10.1073/pnas.1016217108 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hong J, Lambert JD, Lee SH et al (2003) Involvement of multidrug resistance-associated proteins in regulating cellular levels of (−)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 310:222–227CrossRefGoogle Scholar
  33. Hu M, Chen J, Lin H (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307:314–321.  https://doi.org/10.1124/jpet.103.053496 CrossRefPubMedGoogle Scholar
  34. Huang C, Chen Y, Zhou T, Chen G (2009) Sulfation of dietary flavonoids by human sulfotransferases. Xenobiotica; the fate of foreign compounds in biological systems. 39:312–322CrossRefGoogle Scholar
  35. Huang MT, Ma W, Lu YP et al (1995) Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16:2493–2497CrossRefGoogle Scholar
  36. Huang Z, Xu Y, Wang Q, Gao X (2019) Metabolism and mutual biotransformations of anthraquinones and anthrones in rhubarb by human intestinal flora using UPLC-Q-TOF/MS. J Chromatogr B Anal Technol Biomed Life Sci 1104:59–66.  https://doi.org/10.1016/j.jchromb.2018.10.008 CrossRefGoogle Scholar
  37. Jia Y, Liu Z, Huo X et al (2015) Enhancement effect of resveratrol on the intestinal absorption of bestatin by regulating PEPT1, MDR1 and MRP2 in vivo and in vitro. Int J Pharm 495:588–598.  https://doi.org/10.1016/j.ijpharm.2015.09.042 CrossRefPubMedGoogle Scholar
  38. Juan ME, Gonzalez-Pons E, Planas JM (2010) Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr 140:489–495.  https://doi.org/10.3945/jn.109.114959 CrossRefPubMedGoogle Scholar
  39. Jude S, Amalraj A, Kunnumakkara AB et al (2018) Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (Cureit™) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules 23:2415.  https://doi.org/10.3390/molecules23102415 CrossRefPubMedCentralGoogle Scholar
  40. Kahle K, Kempf M, Schreier P et al (2011) Intestinal transit and systemic metabolism of apple polyphenols. Eur J Nutr 50:507–522.  https://doi.org/10.1007/s00394-010-0157-0 CrossRefPubMedGoogle Scholar
  41. Kaldas MI, Walle UK, Walle T (2003) Resveratrol transport and metabolism by human intestinal Caco-2 cells. J Pharm Pharmacol 55:307–312.  https://doi.org/10.1211/002235702612 CrossRefPubMedGoogle Scholar
  42. Keppler K, Humpf H-U (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195–5205.  https://doi.org/10.1016/j.bmc.2005.05.003 CrossRefPubMedGoogle Scholar
  43. Kim M, Lee J, Han J (2015) Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J Sci Food Agric 95:1925–1931.  https://doi.org/10.1002/jsfa.6900 CrossRefPubMedGoogle Scholar
  44. Kondo A, Narumi K, Ogura J et al (2017) Organic anion-transporting polypeptide (OATP) 2B1 contributes to the cellular uptake of theaflavin. Drug Metab Pharmacokinet 32:145–150.  https://doi.org/10.1016/j.dmpk.2016.11.009 CrossRefPubMedGoogle Scholar
  45. Konishi Y, Hitomi Y, Yoshida M, Yoshioka E (2005) Absorption and bioavailability of artepillin C in rats after oral administration. J Agric Food Chem 53:9928–9933.  https://doi.org/10.1021/jf051962y CrossRefPubMedGoogle Scholar
  46. Liu J, Yu X, Zhong S et al (2017) Hepatic and renal metabolism of genistein: An individual-based model to predict glucuronidation behavior of genistein in different organs. J Pharm Biomed Anal 139:252–262.  https://doi.org/10.1016/j.jpba.2017.02.020 CrossRefPubMedGoogle Scholar
  47. Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos 30:370–377CrossRefGoogle Scholar
  48. Lou Y, Zheng J, Wang B et al (2014) Metabolites characterization of chamaechromone in vivo and in vitro by using ultra-performance liquid chromatography/Xevo G2 quadrupole time-of-flight tandem mass spectrometry. J Ethnopharmacol 151:242–252.  https://doi.org/10.1016/j.jep.2013.10.027 CrossRefPubMedGoogle Scholar
  49. Mansoorian B, Combet E, Alkhaldy A et al (2019) Impact of fermentable fibres on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. Int J Environ Res Public Heal 16CrossRefGoogle Scholar
  50. Moohammadaree A, Changtam C, Wicha P et al (2015) Mechanisms of vasorelaxation induced by hexahydrocurcuminin isolated rat thoracic aorta. Phytother Res 29:1806–1813.  https://doi.org/10.1002/ptr.5448 CrossRefPubMedGoogle Scholar
  51. Morales NP, Sirijaroonwong S, Yamanont P, Phisalaphong C (2015) Electron paramagnetic resonance study of the free radical scavenging capacity of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 38:1478–1483.  https://doi.org/10.1248/bpb.b15-00209 CrossRefPubMedGoogle Scholar
  52. Murugan P, Pari L (2007) Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol 113:479–486.  https://doi.org/10.1016/j.jep.2007.07.004 CrossRefPubMedGoogle Scholar
  53. Oliveira EJ, Watson DG (2000) In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes. FEBS Lett 471:1–6CrossRefGoogle Scholar
  54. Otake Y, Hsieh F, Walle T (2002) Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab Dispos 30:576–581CrossRefGoogle Scholar
  55. Pinkaew D, Changtam C, Tocharus C et al (2016) Association of neuroprotective effect of Di-O-Demethylcurcumin on abeta25-35-induced neurotoxicity with suppression of NF-kappaB and activation of Nrf2. Neurotox Res 29:80–91.  https://doi.org/10.1007/s12640-015-9558-4 CrossRefPubMedGoogle Scholar
  56. Piver B, Berthou F, Dreano Y, Lucas D (2001) Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett 125:83–91.  https://doi.org/10.1016/S0378-4274(01)00418-0 CrossRefPubMedGoogle Scholar
  57. Ravisankar S, Agah S, Kim H et al (2019) Combined cereal and pulse flavonoids show enhanced bioavailability by downregulating phase II metabolism and ABC membrane transporter function in Caco-2 model. Food Chem 279:88–97.  https://doi.org/10.1016/j.foodchem.2018.12.006 CrossRefPubMedGoogle Scholar
  58. Riha J, Brenner S, Bohmdorfer M et al (2014) Resveratrol and its major sulfated conjugates are substrates of organic anion transporting polypeptides (OATPs): impact on growth of ZR-75-1 breast cancer cells. Mol Nutr Food Res 58:1830–1842.  https://doi.org/10.1002/mnfr.201400095 CrossRefPubMedGoogle Scholar
  59. Rodríguez-Morató J, Farré M, Pérez-Mañá C et al (2015) Pharmacokinetic comparison of soy isoflavone extracts in human plasma. J Agric Food Chem 63:6946CrossRefGoogle Scholar
  60. Ruefer CE, Gerhauser C, Frank N et al (2005) In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol Nutr Food Res 49:851–856.  https://doi.org/10.1002/mnfr.200500057 CrossRefPubMedGoogle Scholar
  61. Scholl C, Lepper A, Lehr T et al (2018) Population nutrikinetics of green tea extract. PLoS One 13:e0193074.  https://doi.org/10.1371/journal.pone.0193074 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Srimuangwong K, Tocharus C, Yoysungnoen Chintana P et al (2012) Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells. World J Gastroenterol 18:2383–2389.  https://doi.org/10.3748/wjg.v18.i19.2383 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Stevens JF, Maier CS (2016) The Chemistry of Gut Microbial Metabolism of Polyphenols. Phytochem Rev 15:425–444.  https://doi.org/10.1007/s11101-016-9459-z CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stupans I, Tan H-W, Kirlich A et al (2002) Inhibition of CYP3A-mediated oxidation in human hepatic microsomes by the dietary derived complex phenol, gallic acid. J Pharm Pharmacol 54:269CrossRefGoogle Scholar
  65. Su H, Lin Q, Wang X et al (2016) Absorptive interactions of concurrent oral administration of (+)-catechin and puerarin in rats and the underlying mechanisms. Acta Pharmacol Sin 37:545–554.  https://doi.org/10.1038/aps.2015.164 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tao J, Zhao M, Wang D et al (2016) Biotransformation and metabolic profile of catalpol with human intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 1009–1010:163–169.  https://doi.org/10.1016/j.jchromb.2015.12.007 CrossRefGoogle Scholar
  67. Teng Z, Yuan C, Zhang F et al (2012) Intestinal absorption and first-pass metabolism of polyphenol compounds in rat and their transport dynamics in Caco-2 cells. PLoS One 7:e29647–e29647.  https://doi.org/10.1371/journal.pone.0029647 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Theilmann MC, Goh YJ, Nielsen KF et al (2017) Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. MBio 8.  https://doi.org/10.1128/mBio.01421-17
  69. Tomás-Barberán FA, García-Villalba R, González-Sarrías A et al (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three Urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538.  https://doi.org/10.1021/jf5024615 CrossRefPubMedGoogle Scholar
  70. Uchaipichat V, Mackenzie PI, Guo X-H et al (2004) Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413–423.  https://doi.org/10.1124/dmd.32.4.413 CrossRefPubMedGoogle Scholar
  71. Wan J-Y, Zhang Y-Z, Yuan J-B et al (2017) Biotransformation and metabolic profile of anemoside B4 with rat small and large intestine microflora by ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 31.  https://doi.org/10.1002/bmc.3873 CrossRefGoogle Scholar
  72. Wen X, Walle T (2006) Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos 34:1786–1792.  https://doi.org/10.1124/dmd.106.011122 CrossRefPubMedGoogle Scholar
  73. Wong YC, Zhang L, Lin G, Zuo Z (2009) Intestinal first-pass glucuronidation activities of selected dihydroxyflavones. Int J Pharm 366:14–20.  https://doi.org/10.1016/j.ijpharm.2008.08.035 CrossRefPubMedGoogle Scholar
  74. Xu J, Qian D, Jiang S et al (2014) Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to determine the metabolites of orientin produced by human intestinal bacteria. J Chromatogr B 944:123–127.  https://doi.org/10.1016/j.jchromb.2013.11.002 CrossRefGoogle Scholar
  75. Zhai S, Dai R, Friedman FK, Vestal RE (1998) Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab Dispos 26:989–992PubMedGoogle Scholar
  76. Zhang G, Gong T, Kano Y, Yuan D (2014) Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B 947–948:117–124.  https://doi.org/10.1016/j.jchromb.2013.12.017 CrossRefGoogle Scholar
  77. Zhang L, Lin G, Zuo Z (2007) Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein. Pharm Res 24:81–89.  https://doi.org/10.1007/s11095-006-9126-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muddasarul Hoda
    • 1
    • 2
  • Shanmugam Hemaiswarya
    • 1
  • Mukesh Doble
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Biological SciencesAliah UniversityKolkataIndia

Personalised recommendations