Polyphenol Nanoformulations with Potential Antidiabetic Properties

  • Muddasarul Hoda
  • Shanmugam Hemaiswarya
  • Mukesh Doble


The physiochemical stability of polyphenols is affected by environmental parameters (e.g., light, oxygen, or temperature) and hence their metabolism, stability inside the biological system, bioavailability, and bioactivity are altered. These limitations can be overcome by loading the polyphenols into nanoparticles. An increase in the bioavailability of polyphenol (epigallocatechin gallate, curcumin, and resveratrol) nanoparticles is observed with an enhancement in their solubility, prevention of intestinal environment-mediated degradation, elevation of the permeation rate in small intestine, and enhancement of its pharmacokinetic characters. The bioactivities such as anticancer, antioxidant, antidiabetic, and anti-inflammatory of polyphenols have been reported to be enhanced after nanoparticle encapsulation.


Bioavailability Curcumin Epigallocatechin Gallate (EGCG) Resveratrol 


  1. Abdel-Mageid AD et al (2018) The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine Int J Phytotherapy Phytopharmacol 43:126–134. GermanyCrossRefGoogle Scholar
  2. Abrego G et al (2015) Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm 95:261–270. CrossRefPubMedGoogle Scholar
  3. Ahangarpour A et al (2018) Solid lipid nanoparticles of Myricitrin have antioxidant and antidiabetic effects on Streptozotocin-nicotinamide-induced diabetic model and Myotube cell of male mouse. Oxid Med Cell Longev 2018:7496936. HindawiCrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahmed S et al (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7. CrossRefGoogle Scholar
  5. Akbar MU et al (2018) In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: curcumin therapeutic potential. Int J Biol Macromol 120:2418–2430. CrossRefPubMedGoogle Scholar
  6. Anand P et al (2008) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267(1):133–164. CrossRefPubMedGoogle Scholar
  7. Castangia I et al (2014) Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater 10(3):1292–1300. EnglandCrossRefPubMedGoogle Scholar
  8. Chang C-Y et al (2016) Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int J Nanomed 12:279–294. Dove Medical PressCrossRefGoogle Scholar
  9. Chauhan AS (2018) Dendrimers for drug delivery. Molecules 23(4). CrossRefGoogle Scholar
  10. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed 7:1189–1202. 2012/03/07. Dove Medical PressCrossRefGoogle Scholar
  11. Devadasu VR, Wadsworth RM, Kumar MNVR (2011) Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: a possible remedy to diabetic complications. Drug Deli Trans Res 1(6):448–455. United StatesCrossRefGoogle Scholar
  12. Dora CL et al (2016) Oral delivery of a high quercetin payload Nanosized emulsion: in vitro and in vivo activity against B16-F10 melanoma. J Nanosci Nanotechnol 16(2):1275–1281. United StatesCrossRefGoogle Scholar
  13. Dube A, Nicolazzo JA, Larson I (2011) Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci 44(3):422–426. CrossRefPubMedGoogle Scholar
  14. Fangueiro JF et al (2015) Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 95:307–322. CrossRefPubMedGoogle Scholar
  15. Fangueiro JF et al (2016) Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and ex vivo studies. Int J Pharm 502(1–2):161–169. Elsevier BVCrossRefPubMedGoogle Scholar
  16. Gadkari PV, Balaraman M (2015) Extraction of catechins from decaffeinated green tea for development of nanoemulsion using palm oil and sunflower oil based lipid carrier systems. J Food Eng 147:14–23. CrossRefGoogle Scholar
  17. Gokce EH et al (2012) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomed 7:1841–1850. 2012/04/11. Dove Medical PressCrossRefGoogle Scholar
  18. Grama CN et al (2013) Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 8(10):e78217. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Granja A et al (2017) Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem 237:803–810. CrossRefPubMedGoogle Scholar
  20. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16. discussion 16. SwitzerlandCrossRefGoogle Scholar
  21. Guo C et al (2016) Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep 6:29753. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gupta P et al (2015) Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater 27:194–204. EnglandCrossRefPubMedPubMedCentralGoogle Scholar
  23. Han J et al (2016) Peptide micelle-mediated curcumin delivery for protection of islet beta-cells under hypoxia. J Drug Target 24(7):618–623. EnglandCrossRefPubMedGoogle Scholar
  24. Harada T, Lincoln SF, Kee TW (2016) Excited-state dynamics of the medicinal pigment curcumin in a hydrogel. Phys Chem Chem Phys PCCP 18(40):28125–28133. EnglandCrossRefPubMedGoogle Scholar
  25. Hong Z et al (2014) Improving the effectiveness of (−)-epigallocatechin Gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and Polyaspartic acid. J Agri Food Chem 62(52):12603–12609. American Chemical SocietyCrossRefGoogle Scholar
  26. Jia T et al (2017) Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front Neurosci 11:755. SwitzerlandCrossRefPubMedGoogle Scholar
  27. Joshi RP et al (2013) SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. Nanomed Nanotechnol Biol Med 9(6):776–785. United StatesCrossRefGoogle Scholar
  28. Kamar SS, Abdel-Kader DH, Rashed LA (2018) Beneficial effect of curcumin nanoparticles-hydrogel on excisional skin wound healing in type-I diabetic rat: histological and immunohistochemical studies. Ann Anat Anatomischer Anzeiger: Off Organ Anatomische Gesellschaft 222:94–102. GermanyCrossRefGoogle Scholar
  29. Karri VVSR et al (2016) Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 93:1519–1529. CrossRefPubMedGoogle Scholar
  30. Katas H et al (2017) Thermoresponsive curcumin/DsiRNA nanoparticle gels for the treatment of diabetic wounds: synthesis and drug release. Ther Deliv 8(3):137–150. CrossRefPubMedGoogle Scholar
  31. Kluin OS et al (2013) Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 10(3):341–351. EnglandCrossRefPubMedGoogle Scholar
  32. Lee M-J et al (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev 11(10):1025–1032Google Scholar
  33. Lin Y-H, Lin J-H, Hong Y-S (2017) Development of chitosan/poly-gamma-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J Biomed Mater Res Part B Appl Biomater 105(1):81–90. United StatesCrossRefPubMedGoogle Scholar
  34. Liu J et al (2018) Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mat Interfaces 10(19):16315–16326. United StatesCrossRefGoogle Scholar
  35. Montenegro L et al (2017) Resveratrol-loaded lipid Nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 9(4):58. MDPICrossRefPubMedCentralGoogle Scholar
  36. Moradi A et al (2018) An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 34:779. EnglandCrossRefPubMedGoogle Scholar
  37. Neves AR et al (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 8:177–187. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pandita D et al (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62:1165–1174. CrossRefGoogle Scholar
  39. Panwar R et al (2018) In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 92:381–392. CrossRefGoogle Scholar
  40. Peñalva R et al (2018) Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int J Mol Sci 19(9):2816. MDPICrossRefPubMedCentralGoogle Scholar
  41. Price NL et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rahimi HR et al (2016) Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J Phytomedicine 6(4):383–398. CrossRefGoogle Scholar
  43. Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B: Biointerfaces 139:52–61. CrossRefPubMedGoogle Scholar
  44. Rashidinejad A et al (2014) Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem 156:176–183. CrossRefPubMedGoogle Scholar
  45. Serini S et al (2018) Omega-3 PUFA loaded in resveratrol-based solid lipid nanoparticles: physicochemical properties and antineoplastic activities in human colorectal Cancer cells in vitro. Int J Mol Sci 19(2):586. MDPICrossRefPubMedCentralGoogle Scholar
  46. Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of au, ag and au–ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79(1):254–262. CrossRefPubMedGoogle Scholar
  47. Shoba G et al (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356. GermanyCrossRefPubMedGoogle Scholar
  48. Singh G, Pai RS (2014) Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 11(5):647–659. EnglandCrossRefPubMedGoogle Scholar
  49. Siu FYK, Ye S, Lin H, Li S (2018) Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 13:4133–4144CrossRefGoogle Scholar
  50. Soleas GJ et al (2001) Absorption of trans-resveratrol in rats. Methods Enzymol 335:145–154. CrossRefPubMedGoogle Scholar
  51. Swarnalatha L, Christina R, Shruti R, Payas B (2012) Evaluation of invitro antidiabetic activity of Sphaeranthus amaranthoides silver nanoparticles. Int J Nanomater Biostruct 2:25–29Google Scholar
  52. Szkudelski T, Szkudelska K (2015) Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta (BBA) Mol Basis Dis 1852(6):1145–1154. CrossRefGoogle Scholar
  53. Venkatasubbu GD, Anusuya T (2017) Investigation on curcumin nanocomposite for wound dressing. Int J Biol Macromol 98:366–378. CrossRefPubMedGoogle Scholar
  54. Vijayakumar V et al (2019) Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 122:137–148. CrossRefPubMedGoogle Scholar
  55. Walle T et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377 LP–1371382. CrossRefGoogle Scholar
  56. Yekollu SK, Thomas R, O’Sullivan B (2011) Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes. 2011/10/17. American Diabetes Association 60(11):2928–2938. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yücel Ç, Şeker Karatoprak G, Atmar A (2018) Novel resveratrol-loaded Nanocochleates and effectiveness in the treatment of diabetes. Fabad J Pharm SciGoogle Scholar
  58. Zhang S et al (2017) Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS. Food Funct 8:3219. CrossRefPubMedGoogle Scholar
  59. Zu Y et al (2018) Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B Biointerfaces 164:414–423. 2017/12/27CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muddasarul Hoda
    • 1
    • 2
  • Shanmugam Hemaiswarya
    • 1
  • Mukesh Doble
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Biological SciencesAliah UniversityKolkataIndia

Personalised recommendations