Advertisement

Neural Underpinnings of Creative Thinking and Tool Use: A Meta-Analysis of Neuroimaging Data

  • Naoki MiuraEmail author
  • Yukako Sasaki
  • Kunihiro Hasegawa
  • Hiroki C. Tanabe
Chapter
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)

Abstract

The aim of our research project was to investigate whether the replacement of Neanderthals by modern humans can be explained by differences in anatomical and functional differences of the brain. In the present study, we created functional maps of creative thinking and understanding of tool use action.

Research articles on neuroimaging studies of creative thinking and observation or imitation of tool use action were collected, and then meta-analysis using activation likelihood estimation for neuroimaging articles was performed to evaluate the regions associated with specific cognitive functions.

The results demonstrated that the lateral fronto-parieto-temporal network of the left hemisphere was mainly contributed to the cognitive processing of both creative thinking and tool use. The right cerebellum also participated in those cognitive processings. Our reconstruction of the virtual Neanderthal brain using computational neuroanatomy indicates morphological differences in parietal cortex and cerebellum between Neanderthals and modern humans. Integrating with those results, the difference in cognitive ability of learning behavior could be discussed from the standpoint of neuroscience.

Keywords

Creativity Tool use Meta-analysis Functional brain map Cognitive neuroscience 

Notes

Acknowledgment

This study was supported by Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 22101007), MEXT, Japan.

References

  1. Abe-Ouchi A, Saito F, Kawamura K, Raymo M, Okuno J, Takahashi K, Blatter H (2013) Insolation driven 100,000-year glacial cycles and hysteresis of ice sheet volume. Nature 500:190–193CrossRefGoogle Scholar
  2. Abraham A, Pieritz K, Thybusch K, Rutter B, Kröger S, Schweckendiek J, Stark R, Windmann S, Hermann C (2012) Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia 50(8):1906–1917CrossRefGoogle Scholar
  3. Almeida J, Fintzi AR, Mahon BZ (2013) Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex 49(9):2334–2344CrossRefGoogle Scholar
  4. Arden R, Chavez RS, Grazioplene R, Jung RE (2010) Neuroimaging creativity: a psychometric view. Behav Brain Res 214(2):143–156CrossRefGoogle Scholar
  5. Asari T, Konishi S, Jimura K, Chikazoe J, Nakamura N, Miyashita Y (2008) Right temporopolar activation associated with unique perception. NeuroImage 41(1):145–152CrossRefGoogle Scholar
  6. Aziz-Zadeh L, Kaplan JT, Iacoboni M (2009) “Aha!”: the neural correlates of verbal insight solutions. Hum Brain Mapp 30(3):908–916CrossRefGoogle Scholar
  7. Aziz-Zadeh L, Liew SL, Dandekar F (2013) Exploring the neural correlates of visual creativity. Soc Cogn Affect Neurosci 8(4):475–480CrossRefGoogle Scholar
  8. Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205CrossRefGoogle Scholar
  9. Bengtsson SL, Csíkszentmihályi M, Ullén F (2007) Cortical regions involved in the generation of musical structures during improvisation in pianists. J Cogn Neurosci 19(5):830–842CrossRefGoogle Scholar
  10. Berkowitz AL, Ansari D (2008) Generation of novel motor sequences: the neural correlates of musical improvisation. NeuroImage 41(2):535–543CrossRefGoogle Scholar
  11. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25:151–188CrossRefGoogle Scholar
  12. Cardillo ER, Watson CE, Schmidt GL, Kranjec A, Chatterjee A (2012) From novel to familiar: tuning the brain for metaphors. NeuroImage 59(4):3212–3221CrossRefGoogle Scholar
  13. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50(3):1148–1167CrossRefGoogle Scholar
  14. Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12(4):478–484CrossRefGoogle Scholar
  15. Chouinard PA, Goodale MA (2010) Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis. Neuropsychologia 48(2):409–418CrossRefGoogle Scholar
  16. Chrysikou EG, Thompson-Schill SL (2011) Dissociable brain states linked to common and creative object use. Hum Brain Mapp 32(4):665–675CrossRefGoogle Scholar
  17. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201CrossRefGoogle Scholar
  18. Creem-Regehr SH, Lee JN (2005) Neural representations of graspable objects: are tools special? Brain Res Cogn Brain Res 22(3):457–469CrossRefGoogle Scholar
  19. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212CrossRefGoogle Scholar
  20. Dandan T, Haixue Z, Wenfu L, Wenjing Y, Jiang Q, Qinglin Z (2013) Brain activity in using heuristic prototype to solve insightful problems. Behav Brain Res 253:139–144CrossRefGoogle Scholar
  21. de Manzano Ö, Ullén F (2012) Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates. NeuroImage 59(1):772–780CrossRefGoogle Scholar
  22. Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(10):1763–1777CrossRefGoogle Scholar
  23. Dietrich A, Kanso R (2010) A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull 136(5):822–848CrossRefGoogle Scholar
  24. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926CrossRefGoogle Scholar
  25. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59(3):2349–2361CrossRefGoogle Scholar
  26. Ellamil M, Dobson C, Beeman M, Christoff K (2012) Evaluative and generative modes of thought during the creative process. NeuroImage 59(2):1783–1794CrossRefGoogle Scholar
  27. Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto L, Hichwa R, Bellugi U (2004) Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming. Brain Lang 89(1):27–37CrossRefGoogle Scholar
  28. Fabbri-Destro M, Rizzolatti G (2008) Mirror neurons and mirror systems in monkeys and humans. Physiology 23(3):171–179CrossRefGoogle Scholar
  29. Fadiga L, Craighero L, D'Ausilio A (2009) Broca’s area in language, action, and music. Ann N Y Acad Sci 1169:448–458CrossRefGoogle Scholar
  30. Fink A, Grabner RH, Benedek M, Reishofer G, Hauswirth V, Fally M, Neuper C, Ebner F, Neubauer AC (2009) The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum Brain Mapp 30(3):734–748CrossRefGoogle Scholar
  31. Fink A, Grabner RH, Gebauer D, Reishofer G, Koschutnig K, Ebner F (2010) Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. NeuroImage 52(4):1687–1695CrossRefGoogle Scholar
  32. Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M (2006) The role of the dorsal stream for gesture production. NeuroImage 29(2):417–428CrossRefGoogle Scholar
  33. Geake JG, Hansen PC (2005) Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage 26(2):555–564CrossRefGoogle Scholar
  34. Goel V, Vartanian O (2005) Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex 15(8):1170–1177CrossRefGoogle Scholar
  35. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefGoogle Scholar
  36. Green AE, Kraemer DJ, Fugelsang JA, Gray JR, Dunbar KN (2012) Neural correlates of creativity in analogical reasoning. J Exp Psychol Learn Mem Cogn 38(2):264–272CrossRefGoogle Scholar
  37. Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17CrossRefGoogle Scholar
  38. Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12(1):1–19CrossRefGoogle Scholar
  39. Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40(2):212–222CrossRefGoogle Scholar
  40. Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(11):2306–2313CrossRefGoogle Scholar
  41. Hao X, Cui S, Li W, Yang W, Qiu J, Zhang Q (2013) Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study. Brain Res 1534:46–54CrossRefGoogle Scholar
  42. Hauk O, Johnsrude I, Pulvermüller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41(2):301–307CrossRefGoogle Scholar
  43. Hermsdörfer J, Terlinden G, Mühlau M, Goldenberg G, Wohlschläger AM (2007) Neural representations of pantomimed and actual tool use: evidence from an event-related fMRI study. NeuroImage 36(S2):T109–T118CrossRefGoogle Scholar
  44. Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358CrossRefGoogle Scholar
  45. Howard-Jones PA, Blakemore SJ, Samuel EA, Summers IR, Claxton G (2005) Semantic divergence and creative story generation: an fMRI investigation. Cogn Brain Res 25(1):240–250CrossRefGoogle Scholar
  46. Huang P, Qiu L, Shen L, Zhang Y, Song Z, Qi Z, Gong Q, Xie P (2012) Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Hum Brain Mapp 34(10):2724–2732CrossRefGoogle Scholar
  47. Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43(3):301–307CrossRefGoogle Scholar
  48. Iriki A, Tanaka M, Obayashi S, Iwamura Y (2001) Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci Res 40(2):163–173CrossRefGoogle Scholar
  49. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A 96(16):9379–9384CrossRefGoogle Scholar
  50. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304CrossRefGoogle Scholar
  51. Jeon H (2014) Hierarchical processing in the prefrontal cortex in a variety of cognitive domains. Front Syst Neurosci 8:223CrossRefGoogle Scholar
  52. Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15(6):681–695CrossRefGoogle Scholar
  53. Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, Reber PJ, Kounios J (2004) Neural activity when people solve verbal problems with insight. PLoS Biol 2(4):E97CrossRefGoogle Scholar
  54. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311CrossRefGoogle Scholar
  55. Kleibeuker SW, Koolschijn PC, Jolles DD, Schel MA, De Dreu CK, Crone EA (2013) Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood. Dev Cogn Neurosci 5:197–206CrossRefGoogle Scholar
  56. Kochiyama T, Ogihara N, Tanabe HC, Kondo O, Amano H, Hasegawa K, Suzuki H, Ponce de Leon MS, Zollikofer CPE, Bastir M, Stringer C, Sadato N, Akazawa T (2018) Reconstructing the Neanderthal brain using computational anatomy. Sci Rep 8:6269Google Scholar
  57. Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-Beeman M (2006) The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol Sci 17(10):882–890CrossRefGoogle Scholar
  58. Kowatari Y, Lee SH, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30(5):1678–1690CrossRefGoogle Scholar
  59. Kröger S, Rutter B, Stark R, Windmann S, Hermann C, Abraham A (2012) Using a shoe as a plant pot: neural correlates of passive conceptual expansion. Brain Res 1430:52–61CrossRefGoogle Scholar
  60. Króliczak G, Frey SH (2009) A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cereb Cortex 19(10):2396–2410CrossRefGoogle Scholar
  61. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25(1):155–164CrossRefGoogle Scholar
  62. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28(11):1194–1205CrossRefGoogle Scholar
  63. Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One 3(2):e1679CrossRefGoogle Scholar
  64. Liu S, Chow MH, Xu Y, Erkkinen MG, Swett KE, Eagle MW, Rizik-Baer DA, Braun AR (2012) Neural correlates of lyrical improvisation: an fMRI study of freestyle rap. Sci Rep 2:834CrossRefGoogle Scholar
  65. Ludmer R, Dudai Y, Rubin N (2011) Uncovering camouflage: amygdala activation predicts long-term memory of induced perceptual insight. Neuron 69(5):1002–1014CrossRefGoogle Scholar
  66. Luo J, Niki K (2003) Function of hippocampus in “insight” of problem solving. Hippocampus 13(3):316–323CrossRefGoogle Scholar
  67. Luo J, Niki K, Phillips S (2004) Neural correlates of the ‘Aha! reaction’. Neuroreport 15(13):2013–2017CrossRefGoogle Scholar
  68. Luo J, Niki K, Knoblich G (2006) Perceptual contributions to problem solving: chunk decomposition of Chinese characters. Brain Res Bull 70(4–6):430–443CrossRefGoogle Scholar
  69. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/ MT1: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574CrossRefGoogle Scholar
  70. Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379(6566):649–652CrossRefGoogle Scholar
  71. Mashal N, Faust M, Hendler T, Jung-Beeman M (2007) An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang 100(2):115–126CrossRefGoogle Scholar
  72. Menz MM, Blangero A, Kunze D, Binkofski F (2010) Got it! Understanding the concept of a tool. NeuroImage 51(4):1438–1444CrossRefGoogle Scholar
  73. Miura N, Nagai K, Yamazaki M, Yoshida Y, Tanabe HC, Akazawa T, Sadato N (2014) Brain activation related to the imitative learning of bodily actions observed during the construction of a Mousterian stone tool: a functional magnetic resonance imaging study, Dynamics of learning in Neanderthals and modern humans volume 2: cognitive and physical perspectives. Springer, Tokyo, pp 221–232Google Scholar
  74. Mizelle JC, Wheaton LA (2010) Why is that hammer in my coffee? A multimodal imaging investigation of contextually based tool understanding. Front Hum Neurosci 4:233CrossRefGoogle Scholar
  75. Mruczek RE, von Loga IS, Kastner S (2013) The representation of tool and non-tool object information in the human intraparietal sulcus. J Neurophysiol 109(12):2883–2896CrossRefGoogle Scholar
  76. Patel AD (2003) Language, music, syntax and the brain. Nat Neurosci 6(7):674CrossRefGoogle Scholar
  77. Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608CrossRefGoogle Scholar
  78. Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191(1):62–88CrossRefGoogle Scholar
  79. Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62(2):816–847CrossRefGoogle Scholar
  80. Qiu J, Li H, Jou J, Liu J, Luo Y, Feng T, Wu Z, Zhang Q (2010) Neural correlates of the “Aha” experiences: evidence from an fMRI study of insight problem solving. Cortex 46(3):397–403CrossRefGoogle Scholar
  81. Rutter B, Kröger S, Stark R, Schweckendiek J, Windmann S, Hermann C, Abraham A (2012) Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: implications for creative cognition. Brain Cogn 78(2):114–122CrossRefGoogle Scholar
  82. Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18(5):1827–1840CrossRefGoogle Scholar
  83. Shah C, Erhard K, Ortheil HJ, Kaza E, Kessler C, Lotze M (2011) Neural correlates of creative writing: an fMRI study. Hum Brain Mapp 34(5):1088–1101CrossRefGoogle Scholar
  84. Shea JJ, Sisk ML (2010) Complex projectile technology and Homo sapiens dispersal from Africa to Western Eurasia. PaleoAnthropology 2010:100–122Google Scholar
  85. Siebörger FT, Ferstl EC, von Cramon DY (2007) Making sense of nonsense: an fMRI study of task induced inference processes during discourse comprehension. Brain Res 1166:77–91CrossRefGoogle Scholar
  86. Starrfelt R, Gerlach C (2007) The visual what for area: words and pictures in the left fusiform gyrus. NeuroImage 35(1):334–342CrossRefGoogle Scholar
  87. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501CrossRefGoogle Scholar
  88. Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100CrossRefGoogle Scholar
  89. Stout D, Toth N, Schick K, Chaminade T (2008) Neural correlates of early stone age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond Ser B Biol Sci 363(1499):1939–1949CrossRefGoogle Scholar
  90. Tanabe HC, Kochiyama T, Sadato N, Ogihara N (2014) Exploring the difference of brain anatomy and function between Neanderthals and modern humans: neuroanatomical and functional neuroimaging approach. In: Akazawa T, Amari S, Aoki K, Bar-Yosef O, Holloway RL, Ishii S, Kimura T, Nishiaki Y, Ogihara N, Tanabe HC, Terashima H, Yoneda M (eds) The second international conference of replacement of Neanderthals by modern humans: testing evolutionary models of learning. RNMH Project Group, Tokyo, pp 121–123Google Scholar
  91. Tian F, Tu S, Qiu J, Lv JY, Wei DT, Su YH, Zhang QL (2011) Neural correlates of mental preparation for successful insight problem solving. Behav Brain Res 216(2):626–630CrossRefGoogle Scholar
  92. Tomasino B, Weiss PH, Fink GR (2012) Imagined tool-use in near and far space modulates the extra-striate body area. Neuropsychologia 50(10):2467–2476CrossRefGoogle Scholar
  93. Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3125–3230CrossRefGoogle Scholar
  94. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13CrossRefGoogle Scholar
  95. Valyear KF, Cavina-Pratesi C, Stiglick AJ, Culham JC (2007) Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? NeuroImage 36(S 2):T94–T108CrossRefGoogle Scholar
  96. van Elk M (2014) The left inferior parietal lobe represents stored hand-postures for object use and action prediction. Front Psychol 5:333Google Scholar
  97. Vartanian O, Goel V (2005) Task constraints modulate activation in right ventral lateral prefrontal cortex. NeuroImage 27(4):927–933CrossRefGoogle Scholar
  98. Villarreal MF, Cerquetti D, Caruso S, Schwarcz López Aranguren V, Gerschcovich ER, Frega AL, Leiguarda RC (2013) Neural correlates of musical creativity: differences between high and low creative subjects. PLoS One 8(9):e75427CrossRefGoogle Scholar
  99. Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E (2010) Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169(3):1158–1167CrossRefGoogle Scholar
  100. Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E (2011) Neural correlates of pantomiming familiar and unfamiliar tools: action semantics versus mechanical problem solving? Hum Brain Mapp 32(6):905–918CrossRefGoogle Scholar
  101. Wadsworth HM, Kana RK (2011) Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia 49(7):1863–1869CrossRefGoogle Scholar
  102. Wu L, Knoblich G, Luo J (2013) The role of chunk tightness and chunk familiarity in problem solving: evidence from ERPs and fMRI. Hum Brain Mapp 34(5):1173–1186CrossRefGoogle Scholar
  103. Yang J, Shu H (2014) Passive reading and motor imagery about hand actions and tool-use actions: an fMRI study. Exp Brain Res 232(2):453–467CrossRefGoogle Scholar
  104. Zhao Q, Zhou Z, Xu H, Chen S, Xu F, Fan W, Han L (2013) Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese ‘chengyu’ riddles. PLoS One 8(3):e59351CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Naoki Miura
    • 1
    Email author
  • Yukako Sasaki
    • 2
  • Kunihiro Hasegawa
    • 3
  • Hiroki C. Tanabe
    • 4
  1. 1.Department of Information and Communication Engineering, Faculty of EngineeringTohoku Institute of TechnologySendaiJapan
  2. 2.Advanced Brain Science, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  3. 3.Automotive Human Factors Research CenterNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  4. 4.Division of Psychology, Department of Cognitive and Psychological Sciences, Graduate School of InformaticsNagoya UniversityNagoyaJapan

Personalised recommendations