Arithmetic Circuits Using Reversible Logic: A Survey Report

  • Arindam BanerjeeEmail author
  • Debesh Kumar Das
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 995)


In this paper, a survey has been made on the design of arithmetic circuits like adder, subtractor, multiplier, and squarer. There are many design schemes for those arithmetic circuits some of which have been studied and described in this paper.


Adder Subtractor Multiplier Squarer Reversible logic 


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Castello, D.J., Forney, G.D.: Cannel coding: the road to cannel capacity. Proc. IEEE. 95(6), 1150–1177 (2007)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of landauer/’s principle linking information and thermodynamics. Nature 483(7388), 187–189 (2012)CrossRefGoogle Scholar
  5. 5.
    Hong, S., Kim, S., Papaefthymiou, M.C., Stark, W.E.: Low power parallel multiplier design for dsp applications through co-efficient optimization. In: IEEE International Conference on ASIC/SOC, pp. 286–290 (1999)Google Scholar
  6. 6.
    Bulic, P., Babic, Z., Avramovic, A.: A simple pipelined logarithmic multiplier. In: IEEE International Conference on Computer Design, pp. 235–240, October 2010Google Scholar
  7. 7.
    Mrazek, V., Sarwar, S.S., Sekanina, L., Vasicek, Z., Roy, K.: Design of power-efficient approximate multipliers for approximate artificial neural networks. In: IEEE/ACM International Conference on Computer-Aided Design, pp. 1–7 (2016)Google Scholar
  8. 8.
    Venkatachalam, S., Ko, S.B.: Design of power and area efficient approximate multipliers. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25(5), pp. 1782–1786 (2017)CrossRefGoogle Scholar
  9. 9.
    Yoo, J.T., Smith, K.F., Gopalakrishnan, G.: A fast parallel squarer based on divide-and-conquer. IEEE J. Solid-State Circuits 32, 909912 (June 1997)CrossRefGoogle Scholar
  10. 10.
    Deshpande, A., Draper, J.: Comparing squaring and cubing units with multipliers. In: IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 466–469 (2012)Google Scholar
  11. 11.
    Datla, S.R., Thornton, M.A., Matula, D.W.: A low power high performance radix-4 approximate squaring circuit. In: 20th IEEE International Conference on Application Specific Systems, Architectures and Processors (ASAP), Vol. 7, pp. 91–97 (July 2009)Google Scholar
  12. 12.
    Jayashree, H.V., Thapliyal, H., Agrawal, V.K.: Design of dedicated reversible quantum circuitry for square computation. In: Proceedings of 27th International Conference on VLSI Design, pp. 551–556 (January 2014)Google Scholar
  13. 13.
    Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: Proceedings of 27th International Conferenceon VLSI Design, pp. 545–550 (January 2014)Google Scholar
  14. 14.
    Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic based binary and bcd adder circuits. ACM J. Emerging Technol. Comput. Syst. 9(3), 17:1–17:31 (September 2013)CrossRefGoogle Scholar
  15. 15.
    Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. VLSI 21(7), 1201–1209 (2013)CrossRefGoogle Scholar
  16. 16.
    Thakre, A.K., Chiwande, S.S., Chafale, S.D.: Design of low power multiplier using reversible logic gate. In: Proceedings of International Conference on Green Computing Communication and Electrical Engineering (6–8 March 2014)Google Scholar
  17. 17.
    Madhulika, C., Nayak, V.S.P., Prasanth, C., Praveen, T.H.S.: Design of systolic array multiplier circuit using reversible logic. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, pp. 1670–1673 (2017)Google Scholar
  18. 18.
    Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer (2010)Google Scholar
  19. 19.
    Peres, A.: Reversible logic and quantum computers. APS Phys. Rev. A 32, 3266–3276 (1985)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cuccaro, S.A., Draper, T.G., Kutin, S.A.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184. (February 2008)
  21. 21.
    Thapliyal, H., Arabnia, H., Srinivas, M.: Efficient reversible logic design of bcd subtractors. Springer Trans. Comput. Sci. J. 3(LNCS 5300), 99–121 (2009)Google Scholar
  22. 22.
    Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proceedings of the 11th IEEE International Conference on Nanotechnology (IEEE NANO), pp. 1430–1435 (August 2011)Google Scholar
  23. 23.
    Thapliyal, H., Srinivas, M.B.: Novel reversible multiplier architecture using reversible tsg gate. In: IEEE International Conference on Computer Systems and Applications, 8th March 2006Google Scholar
  24. 24.
    Fredkin, E.F., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3), 219–253 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Haghparast, M., Jassbi, S., Navi, K., Eshghi, M.: Optimized reversible multiplier circuits. J. Circuits Syst. Comput. 18, 311–323 (2009)CrossRefGoogle Scholar
  26. 26.
    Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk SSSR 145 (1963)Google Scholar
  27. 27.
    Offermann, S., Wille, R., Dueck, G.W., Drechsler, R.: Synthesizing multiplier in reversible logic. In: 13th IEEE Symposium on DDECS, pp. 335–340 (April 2010)Google Scholar
  28. 28.
    Axelsen, H.B., Thomsen, M.K.: Garbage-free integer multiplication with constants of the form \(2^{k}\pm 2^{l}\pm 1\). In: 4th Workshop on Reversible Computation (July 2012)Google Scholar
  29. 29.
    Saravanan, P., Chadrasekar, P., Chandran, L., Sriram, N., Kalpana, P.: Design and implementation of efficient vedic multiplier using reversible logic. In: International Symposium on VLSI Design and Test, pp. 364–366 (2012)CrossRefGoogle Scholar
  30. 30.
    Banerjee, A., Das, D.K.: The design of reversible multiplier using ancient indian mathematics. In: International Symposium on Electronic Design, pp. 31–35 (December 2013)Google Scholar
  31. 31.
    Banerjee, A., Das, D.K.: The design of reversible signed multiplier using ancient indian mathematics. J. Low Power Electron. 11, 467–478 (December 2015)CrossRefGoogle Scholar
  32. 32.
    Banerjee, A., Das, D.K.: Squaring in reversible logic using iterative structure. In: Proceedings of East West Design and Test Symposium (September 2014)Google Scholar
  33. 33.
    Banerjee, A., Das, D.K.: Squaring in reversible logic using zero garbage and reduced ancillary inputs. In: International Conference on VLSI Design (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJIS College of EngineeringKalyani, NadiaIndia
  2. 2.Department of Computer ScienceJadavpur UniversityKolkataIndia

Personalised recommendations