Advertisement

Fluoride Nanoparticles for Biomedical Applications

  • M. S. Pudovkin
  • R. M. Rakhmatullin
Chapter

Abstract

This chapter is devoted to the use of fluoride nanoparticles in biomedicine. We overview the use of the fluoride nanoparticles in important areas such as thermometry of a single cell, hyperthermia, photodynamic therapy, caries prevention, antioxidant therapy, magnetic resonance imaging, and bioimaging. The toxicity of some fluoride nanoparticles is also discussed. The main conclusion is that rare earth doped fluoride nanoparticles (especially rare earth doped LnF3 (Ln = La, Ce), NaF4, NaGdF4) successfully proved its efficiency in the above-mentioned areas toward eukaryotic cells and small animals. It should be mentioned that LnF3 (Ln = La, Ce) and NaGdF4 nanoparticles demonstrate low toxicity in vitro and in vivo.

Notes

Acknowledgments

The works was supported by the subsidy allocated to KFU for the state assignment in the sphere of scientific activities [3.1156.2017/4.6] and [3.5835.2017/6.7]. Maksim Pudovkin was supported by the research grant of Kazan Federal University.

References

  1. Alakshin EM, Klochkov AV, Korableva SL, Kuzmin VV, Nuzhina DS, Romanova IV, Savinkov AV, Tagirov MS. Magnetic properties of powders LiTbF4 and TbF3. Magn Reson Solids Electron J. 2016;18(2):1–6.Google Scholar
  2. Alakshin EM, Kondratyeva EI, Nuzhina DS, Iakovleva MF, Kuzmin VV, Safiullin KR, et al. The self-assembly of DyF 3 nanoparticles synthesized by chloride-based route. J Nanopart Res. 2018;20(12):332.  https://doi.org/10.1007/s11051-018-4426-9.CrossRefGoogle Scholar
  3. Azami M, Jalilifiroozinezhad S, Mozafari M, Rabiee M. Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceram Int. 2011;37(6):2007–14.  https://doi.org/10.1016/j.ceramint.2011.02.025.CrossRefGoogle Scholar
  4. Bala WA, Benitha VS, Jeyasubramanian K, Hikku GS, Sankar P, Kumar SV. Investigation of anti-bacterial activity and cytotoxicity of calcium fluoride nanoparticles. J Fluor Chem. 2017;193:38–44.  https://doi.org/10.1016/j.jfluchem.2016.11.014.CrossRefGoogle Scholar
  5. Balabhadra S, Debasu ML, Brites CD, Nunes LA, Malta OL, Rocha J, et al. Boosting the sensitivity of Nd 3+-based luminescent nanothermometers. Nanoscale. 2015;7(41):17261–7.  https://doi.org/10.1039/C5NR05631D.CrossRefPubMedGoogle Scholar
  6. Bao L, Li Z, Tao Q, Xie J, Mei Y, Xiong Y. Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. Nanotechnology. 2013;24(14):145604.CrossRefGoogle Scholar
  7. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2018;24(1):85–98.  https://doi.org/10.1016/j.drudis.2018.08.012.CrossRefPubMedGoogle Scholar
  8. Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, Nadeau J. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. J Photochem Photobiol A Chem. 2016;329:26–34.  https://doi.org/10.1016/j.jphotochem.2016.06.008.CrossRefGoogle Scholar
  9. Blow N. Functional neuroscience: how to get ahead in imaging. Nature. 2009;458(7240):925.PubMedGoogle Scholar
  10. Brites CD, Lima PP, Silva NJ, Millán A, Amaral VS, Palacio F, Carlos LD. Thermometry at the nanoscale. Nanoscale. 2012;4(16):4799–829.  https://doi.org/10.1039/c2nr30663h.CrossRefPubMedGoogle Scholar
  11. Brites CD, Fiaczyk K, Ramalho JF, Sójka M, Carlos LD, Zych E. Widening the temperature range of luminescent thermometers through the intra-and interconfigurational transitions of Pr3+. Adv Opt Mater. 2018;6(10):1701318.  https://doi.org/10.1002/adom.201701318.CrossRefGoogle Scholar
  12. Bu YY, Cheng SJ, Wang XF, Yan XH. Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics. Appl Phys A. 2015;121(3):1171–8.  https://doi.org/10.1007/s00339-015-9483-7.CrossRefGoogle Scholar
  13. Cao T, Yang Y, Sun Y, Wu Y, Gao Y, Feng W, Li F. Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles. Biomaterials. 2013;34(29):7127–34.  https://doi.org/10.1016/j.biomaterials.2013.05.028.CrossRefPubMedGoogle Scholar
  14. Caspers HH, Rast HE, Buchanan RA. Energy levels of Pr3+ in LaF3. J Chem Phys. 1965;43(6):2124–8.  https://doi.org/10.1063/1.1697083.CrossRefGoogle Scholar
  15. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano. 2011;5(6):4537–49.  https://doi.org/10.1021/nn200126a.CrossRefGoogle Scholar
  16. Cerón EN, Ortgies DH, Del Rosal B, Ren F, Benayas A, Vetrone F, et al. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv Mater. 2015;27(32):4781–7.  https://doi.org/10.1002/adma.201501014.CrossRefPubMedGoogle Scholar
  17. Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 2006;6(4):1159–66.  https://doi.org/10.1166/jnn.2006.327.CrossRefPubMedGoogle Scholar
  18. Chen S, Zhang C, Jia G, Duan J, Wang S, Zhang J. Size-dependent cytotoxicity of europium doped NaYF4 nanoparticles in endothelial cells. Mater Sci Eng C. 2014;43:330–42.  https://doi.org/10.1016/j.msec.2014.07.029.CrossRefGoogle Scholar
  19. Chen MH, Jenh YJ, Wu SK, Chen YS, Hanagata N, Lin FH. Non-invasive photodynamic therapy in brain cancer by use of Tb 3+−doped LaF 3 nanoparticles in combination with photosensitizer through X-ray irradiation: a proof-of-concept study. Nanoscale Res Lett. 2017;12(1):62.  https://doi.org/10.1186/s11671-017-1840-3.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng L, Yang K, Shao M, Lu X, Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine. 2011;6(8):1327–40.  https://doi.org/10.2217/nnm.11.56.CrossRefPubMedGoogle Scholar
  21. Clement S, Deng W, Camilleri E, Wilson BC, Goldys EM. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Sci Rep. 2016;6:19954.CrossRefGoogle Scholar
  22. Collins SF, Baxter GW, Wade SA, Sun T, Grattan KTV, Zhang ZY, Palmer AA. Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation. J Appl Phys. 1998;84(9):4649–54.  https://doi.org/10.1063/1.368705.CrossRefGoogle Scholar
  23. Cooper DR, Kudinov K, Tyagi P, Hill CK, Bradforth SE, Nadeau JL. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules. Phys Chem Chem Phys. 2014;16(24):12441–53.  https://doi.org/10.1039/C4CP01044B.CrossRefPubMedGoogle Scholar
  24. Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine. 2012;8(1):46–53.  https://doi.org/10.1016/j.nano.2011.05.005.CrossRefPubMedGoogle Scholar
  25. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28(10):1918–25.  https://doi.org/10.1016/j.biomaterials.2006.11.036.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Das GK, Johnson NJ, Cramen J, Blasiak B, Latta P, Tomanek B, van Veggel FC. NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J Phys Chem Lett. 2012;3(4):524–9.CrossRefGoogle Scholar
  27. Dickeson SK, Bhattacharyya-Pakrasi M, Mathis NL, Schlesinger PH, Santoro SA. Ligand binding results in divalent cation displacement from the α2β1 integrin I domain: evidence from terbium luminescence spectroscopy. Biochemistry. 1998;37(32):11280–8.  https://doi.org/10.1021/bi9727848.CrossRefPubMedGoogle Scholar
  28. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380.CrossRefGoogle Scholar
  29. Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, et al. NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano. 2011;5(11):8665–71.  https://doi.org/10.1021/nn202490m.CrossRefPubMedGoogle Scholar
  30. Dong X, Mi LZ, Zhu J, Wang W, Hu P, Luo BH, Springer TA. αVβ3 integrin crystal structures and their functional implications. Biochemistry. 2012;51(44):8814–28.  https://doi.org/10.1021/bi300734n.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, et al. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725–815.  https://doi.org/10.1021/acs.chemrev.5b00091.CrossRefPubMedGoogle Scholar
  32. Dou QQ, Rengaramchandran A, Selvan ST, Paulmurugan R, Zhang Y. Core–shell upconversion nanoparticle–semiconductor heterostructures for photodynamic therapy. Sci Rep. 2015;5:8252.  https://doi.org/10.1038/srep08252.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dramićanin MD, Antić Ž, Ćulubrk S, Ahrenkiel SP, Nedeljković JM. Self-referenced luminescence thermometry with Sm3+ doped TiO2 nanoparticles. Nanotechnology. 2014;25(48):485501.  https://doi.org/10.1016/j.snb.2014.04.108.CrossRefPubMedGoogle Scholar
  34. Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, Basu T. Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm. Colloids Surf B Biointerfaces. 2016;147:45–53.  https://doi.org/10.1016/j.colsurfb.2016.07.045.CrossRefPubMedGoogle Scholar
  35. Fedorov PP, Luginina AA, Kuznetsov SV, Osiko VV. Nanofluorides. J Fluor Chem. 2011;132(12):1012–39.  https://doi.org/10.1016/j.jfluchem.2011.06.025.CrossRefGoogle Scholar
  36. Feng Y, Chen H, Ma L, Shao B, Zhao S, Wang Z, You H. Surfactant-free aqueous synthesis of novel Ba2GdF7: Yb3+, Er3+@ PEG upconversion nanoparticles for in vivo trimodality imaging. ACS Appl Mater Interfaces. 2017;9(17):15096–102.  https://doi.org/10.1021/acsami.7b03411.CrossRefPubMedGoogle Scholar
  37. Ferraro D, Tredici IG, Ghigna P, Castillio-Michel H, Falqui A, Di Benedetto C, et al. Dependence of the Ce (III)/Ce (IV) ratio on intracellular localization in ceria nanoparticles internalized by human cells. Nanoscale. 2017;9(4):1527–38.  https://doi.org/10.1039/C6NR07701C.CrossRefPubMedGoogle Scholar
  38. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239.CrossRefGoogle Scholar
  39. Förster T. Transfer mechanisms of electronic excitation energy. Radiat Res Suppl. 1960;2:326–39.CrossRefGoogle Scholar
  40. Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(6):559–73.  https://doi.org/10.1002/wnan.1291.CrossRefPubMedGoogle Scholar
  41. Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009;4(1):1–23.  https://doi.org/10.1002/cmmi.265.CrossRefPubMedGoogle Scholar
  42. Gharouel S, Labrador-Páez L, Haro-González P, Horchani-Naifer K, Férid M. Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. J Lumin. 2018;201:372–83.  https://doi.org/10.1016/j.jlumin.2018.04.035.CrossRefGoogle Scholar
  43. Grzyb T, Runowski M, Dąbrowska K, Giersig M, Lis S. Structural, spectroscopic and cytotoxicity studies of TbF3@ CeF3 and TbF3@CeF3@ SiO2 nanocrystals. J Nanopart Res. 2013;15(10):1958.  https://doi.org/10.1007/s11051-013-1958-x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hao S, Chen G, Yang C. Sensing using rare-earth-doped upconversion nanoparticles. Theranostics. 2013;3(5):331.CrossRefGoogle Scholar
  45. Henderson B, Imbusch GF. Optical spectroscopy of inorganic solids. New York: Oxford Science; 1989.Google Scholar
  46. Hou Z, Zhang Y, Deng K, Chen Y, Li X, Deng X, et al. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano. 2015;9(3):2584–99.  https://doi.org/10.1021/nn506107c.CrossRefPubMedGoogle Scholar
  47. Hu F, Zhao YS. Inorganic nanoparticle-based T 1 and T 1/T 2 magnetic resonance contrast probes. Nanoscale. 2012;4(20):6235–43.  https://doi.org/10.1039/C2NR31865B.CrossRefPubMedGoogle Scholar
  48. Huang X, Zhuang J, Teng X, Li L, Chen D, Yan X, Tang F. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials. 2010;31(24):6142–53.  https://doi.org/10.1016/j.biomaterials.2010.04.055.CrossRefPubMedGoogle Scholar
  49. Jang GH, Hwang MP, Kim SY, Jang HS, Lee KH. A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials. 2014;35(1):440–9.  https://doi.org/10.1016/j.biomaterials.2013.09.054.CrossRefPubMedGoogle Scholar
  50. Jaque D, Vetrone F. Luminescence nanothermometry. Nanoscale. 2012;4(15):4301–26.  https://doi.org/10.1039/c2nr30764b.CrossRefPubMedGoogle Scholar
  51. Jaque D, Richard C, Viana B, Soga K, Liu X, Solé JG. Inorganic nanoparticles for optical bioimaging. Adv Opt Photon. 2016;8(1):1–103.  https://doi.org/10.1364/AOP.8.000001.CrossRefGoogle Scholar
  52. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145.CrossRefGoogle Scholar
  53. Jin LM, Chen X, Siu CK, Wang F, Yu SF. Enhancing multiphotonupconversion from NaYF4: Yb/Tm@ NaYF4 core–shell nanoparticles via the use of laser cavity. ACS Nano. 2017;11(1):843–9.  https://doi.org/10.1021/acsnano.6b07322.CrossRefPubMedGoogle Scholar
  54. Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. 2016;10(4):3918–35.  https://doi.org/10.1021/acsnano.6b01401.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kanazawa T, Umegaki T, Yamashita K, Monma H, Hiramatsu T. Effects of additives on sintering and some properties of calcium phosphates with various Ca/P ratios. J Mater Sci. 1991;26(2):417–22.  https://doi.org/10.1007/BF00576536.CrossRefGoogle Scholar
  56. Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(3):153–63.  https://doi.org/10.1016/S0928-4680(00)00053-5.CrossRefPubMedGoogle Scholar
  57. Kattel K, Park JY, Xu W, Kim HG, Lee EJ, Bony BA, et al. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials. 2012;33(11):3254–61.  https://doi.org/10.1016/j.biomaterials.2012.01.008.CrossRefPubMedGoogle Scholar
  58. Khaydukov EV, Mironova KE, Semchishen VA, Generalova AN, Nechaev AV, Khochenkov DA, et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci Rep. 2016;6:35103.  https://doi.org/10.1038/srep35103.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed. 2012;51(44):11039–43.  https://doi.org/10.1002/anie.201203780.CrossRefGoogle Scholar
  60. Kostiv U, Patsula V, Noculak A, Podhorodecki A, Větvička D, Poučková P, et al. Phthalocyanine-conjugated upconversion NaYF4: Yb3+/Er3+@ SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem. 2017;12(24):2066–73.  https://doi.org/10.1002/cmdc.201700508.CrossRefPubMedGoogle Scholar
  61. Kucsko G, Maurer PC, Yao NY, Kubo MICHAEL, Noh HJ, Lo PK, et al. Nanometre-scale thermometry in a living cell. Nature. 2013;500(7460):54.CrossRefGoogle Scholar
  62. Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol. 2016;100(4):1901–14.  https://doi.org/10.1007/s00253-015-7154-4.CrossRefPubMedGoogle Scholar
  63. Kuznecov SV, Osiko VV, Tkachenko EA, Fedorov PP. Inorganic nanofluorides and nanocomposites based on them. Usp Khim. 2006;75(12):1193–211.Google Scholar
  64. Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine. 2012;7:5611.  https://doi.org/10.2147/IJN.S37075.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Li C, Lin J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem. 2010;20(33):6831–47.  https://doi.org/10.1039/C0JM00031K.CrossRefGoogle Scholar
  66. Li S, Smith KD, Davis JH, Gordon PB, Breaker RR, Strobel SA. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc Natl Acad Sci. 2013;110(47):19018–23.  https://doi.org/10.1073/pnas.1310439110.CrossRefPubMedGoogle Scholar
  67. Li X, Yi Z, Xue Z, Zeng S, Liu H. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Mater Sci Eng C. 2017;75:510–6.  https://doi.org/10.1016/j.msec.2017.02.085.CrossRefGoogle Scholar
  68. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C. 2009;113(36):15997–6001.  https://doi.org/10.1021/jp904864g.CrossRefGoogle Scholar
  69. Liu C, Hou Y, Gao M. Are rare-earth nanoparticles suitable for in vivo applications? Adv Mater. 2014a;26(40):6922–32.  https://doi.org/10.1002/adma.201305535.CrossRefPubMedGoogle Scholar
  70. Liu Z, Wu Y, Guo Z, Liu Y, Shen Y, Zhou P, Lu X. Effects of internalized gold nanoparticles with respect to cytotoxicity and invasion activity in lung cancer cells. PLoS One. 2014b;9(6):e99175.  https://doi.org/10.1371/journal.pone.0099175.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Liu Q, Feng W, Li F. Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord Chem Rev. 2014c;273:100–10.  https://doi.org/10.1016/j.ccr.2014.01.004.CrossRefGoogle Scholar
  72. Lojpur V, Nikolic M, Mancic L, Milosevic O, Dramicanin MD. Y2O3: Yb, Tm and Y2O3:Yb, Ho powders for low-temperature thermometry based on up-conversion fluorescence. Ceram Int. 2013;39(2):1129–34.  https://doi.org/10.1016/j.ceramint.2012.07.036.CrossRefGoogle Scholar
  73. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015a;115(4):1990–2042.  https://doi.org/10.1021/cr5004198.CrossRefPubMedGoogle Scholar
  74. Lucky SS, Muhammad Idris N, Li Z, Huang K, Soo KC, Zhang Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano. 2015b;9(1):191–205.  https://doi.org/10.1021/nn503450t.CrossRefPubMedGoogle Scholar
  75. Melancon MP, Zhou MIN, Li C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res. 2011;44(10):947–56.  https://doi.org/10.1021/ar200022e.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Miao H, Huang GF, Liu JH, Zhou BX, Pan A, Huang WQ, Huang GF. Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes. Appl Surf Sci. 2016;370:427–32.  https://doi.org/10.1016/j.apsusc.2016.02.122.CrossRefGoogle Scholar
  77. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.  https://doi.org/10.1016/S1360-1385(02)02312-9.CrossRefPubMedGoogle Scholar
  78. Morozov OA, Pavlov VV, Rakhmatullin RM, Semashko VV, Korableva SL. Enhanced room-temperature ferromagnetism in composite CeO2/CeF3 nanoparticles. Phys Status Solidi Rapid Res Lett. 2018;12(12):1800318.  https://doi.org/10.1002/pssr.201800318.CrossRefGoogle Scholar
  79. Naccache R, Yu Q, Capobianco JA. The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv Opt Mater. 2015;3(4):482–509.  https://doi.org/10.1002/adom.201400628.CrossRefGoogle Scholar
  80. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543.CrossRefGoogle Scholar
  81. Nie L, Shen Y, Zhang X, Wang X, Liu B, Wang Y, et al. Selective synthesis of LaF3 and NaLaF4nanocrystals via lanthanide ion doping. J Mater Chem C. 2017;5(35):9188–93.  https://doi.org/10.1039/C7TC02362F.CrossRefGoogle Scholar
  82. Nikolić MG, Antić Ž, Ćulubrk S, Nedeljković JM, Dramićanin MD. Temperature sensing with Eu3+ doped TiO2 nanoparticles. Sensors Actuators B Chem. 2014;201:46–50.CrossRefGoogle Scholar
  83. Orsi D, Rimoldi T, Pinelli S, Alinovi R, Goldoni M, Benecchi G, et al. New CeF3–ZnO nanocomposites for self-lighted photodynamic therapy that block adenocarcinoma cell life cycle. Nanomedicine. 2018;13(18):2311–26.  https://doi.org/10.2217/nnm-2017-039.CrossRefPubMedGoogle Scholar
  84. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167.CrossRefGoogle Scholar
  85. Pavlov VV, Rakhmatullin RM, Morozov OA, Korableva SL, Kiiamov AG, Naumov AK, et al. CeO2/CeF3 composite nanoparticles: fabrication by fluorination of CeO2 with tetrafluoromethane gas. Mater Chem Phys. 2018;207:542–6.  https://doi.org/10.1016/j.matchemphys.2017.12.086.CrossRefGoogle Scholar
  86. Pekkanen AM, DeWitt MR, Rylander MN. Nanoparticle enhanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol. 2014;10(9):1677–712.  https://doi.org/10.1166/jbn.2014.1988.CrossRefPubMedGoogle Scholar
  87. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–49.  https://doi.org/10.1016/j.apcatb.2012.05.036.CrossRefGoogle Scholar
  88. Popov AL, Popova NR, Tarakina NV, Ivanova OS, Ermakov AM, Ivanov VK, Sukhorukov GB. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomater Sci Eng. 2018;4(7):2453–62.  https://doi.org/10.1021/acsbiomaterials.8b00489.CrossRefGoogle Scholar
  89. Prentice LH, Tyas MJ, Burrow MF. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater. 2006;22(8):746–51.  https://doi.org/10.1016/j.dental.2005.11.001.CrossRefPubMedGoogle Scholar
  90. Ptacek P, Schäfer H, Zerzouf O, Kömpe K, Haase M. Crystal phase control of NaGdF4: Eu3+Nanocrystals: influence of the fluoride concentration and molar ratio between NaF and GdF3. Cryst Growth Des. 2010;10(5):2434–8.  https://doi.org/10.1021/cg100282w.CrossRefGoogle Scholar
  91. Pudovkin MS, Korableva SL, Krasheninnicova AO, Nizamutdinov AS, Semashko VV, Zelenihin PV, et al. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria. J Phys Conf Ser. 2014;560(1):012011.CrossRefGoogle Scholar
  92. Pudovkin MS, Zelenikhin PV, Krasheninnikova AO, Korableva SL, Nizamutdinov AS, Alakshin EM, et al. Photoinduced toxicity of PrF3 and LaF3 nanoparticles. Opt Spectrosc. 2016;121(4):538–43.  https://doi.org/10.1134/S0030400X16100209.CrossRefGoogle Scholar
  93. Pudovkin MS, Morozov OA, Pavlov VV, Korableva SL, Lukinova EV, Osin YN, et al. Physical background for luminescence thermometry sensors based on Pr3. J Nanomater. 2017;2017:1–9.  https://doi.org/10.1155/2017/3108586.CrossRefGoogle Scholar
  94. Pudovkin MS, Zelenikhin PV, Shtyreva V, Morozov OA, Koryakovtseva DA, Pavlov VV, et al. Coprecipitation method of synthesis, characterization, and cytotoxicity of Pr3+: LaF3 (CPr= 3, 7, 12, 20, 30%) nanoparticles. J Nanotechnol. 2018;2018:1–9.  https://doi.org/10.1155/2018/8516498.CrossRefGoogle Scholar
  95. Pudovkin MS, Koryakovtseva DA, Lukinova EV, Korableva SL, Khusnutdinova RS, Kiiamov AG, et al. Characterization of Pr-doped LaF3 nanoparticles synthesized by different variations of coprecipitation method. J Nanomater. 2019;2019:1–17.  https://doi.org/10.1155/2019/7549325.CrossRefGoogle Scholar
  96. Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Mesoporous-Silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small. 2009;5(20):2285–90.  https://doi.org/10.1002/smll.200900692.CrossRefPubMedGoogle Scholar
  97. Rahman P, Green M. The synthesis of rare earth fluoride based nanoparticles. Nanoscale. 2009;1(2):214–24.  https://doi.org/10.1039/B9NR00089E.CrossRefPubMedGoogle Scholar
  98. Ren WT, Liang LB, Qi F, Sun ZB, Yang ZY, Huang XQ, et al. Bimodal fluorescence and magnetic resonance imaging using water-soluble hexagonal NaYF 4: Ce, Tb, Gdnanocrystals. J Nanomater. 2011;2011:70.  https://doi.org/10.1155/2011/531217.CrossRefGoogle Scholar
  99. Rimoldi T, Orsi D, Lagonegro P, Ghezzi B, Galli C, Rossi F, et al. CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer. J Mater Sci Mater Med. 2016;27(10):159.  https://doi.org/10.1007/s10856–016–5769–3.CrossRefPubMedGoogle Scholar
  100. Rocha U, Jacinto da Silva C, Ferreira Silva W, Guedes I, Benayas A, Martinez Maestro L, et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano. 2013;7(2):1188–99.  https://doi.org/10.1021/nn304373q.CrossRefPubMedGoogle Scholar
  101. Rocha U, Kumar KU, Jacinto C, Villa I, Sanz-Rodríguez F, del Carmen Iglesias de la Cruz M, et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small. 2014a;10(6):1141–54.  https://doi.org/10.1002/smll.201301716.CrossRefPubMedGoogle Scholar
  102. Rocha U, Upendra Kumar K, Jacinto C, Ramiro J, Caamano AJ, GarcíaSolé J, Jaque D. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl Phys Lett. 2014b;104(5):053703.  https://doi.org/10.1063/1.4862968.CrossRefGoogle Scholar
  103. Rubio L, Marcos R, Hernández A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chem Biol Interact. 2018;291:7–15.  https://doi.org/10.1016/j.cbi.2018.06.002.CrossRefPubMedGoogle Scholar
  104. Sanders K, Degn LL, Mundy WR, Zucker RM, Dreher K, Zhao B, et al. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol. 2012;258(2):226–36.  https://doi.org/10.1016/j.taap.2011.10.023.CrossRefPubMedGoogle Scholar
  105. Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006;342(1):86–91.  https://doi.org/10.1016/j.bbrc.2006.01.129.CrossRefGoogle Scholar
  106. Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struct Mol Biol. 2000;7(9):730.CrossRefGoogle Scholar
  107. Semashko VV, Pudovkin MS, Cefalas AC, Zelenikhin PV, Gavriil VE, Nizamutdinov AS, et al. Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions. Nanoscale Res Lett. 2018;13(1):370.  https://doi.org/10.1186/s11671-018-2775-z.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Shcherbakov AB, Zholobak NM, Baranchikov AE, Ryabova AV, Ivanov VK. Cerium fluoride nanoparticles protect cells against oxidative stress. Mater Sci Eng C. 2015;50:151–9.  https://doi.org/10.1016/j.msec.2015.01.094.CrossRefGoogle Scholar
  109. Silva RAB, Santos FRR, Spadoro ACC, Polizello ACM, De Rossi A, Moreira MR, Nelson-Filho P. Profile of fluoride release from a nanohybrid composite resin. Dentistry. 2015;3000(1):a001.  https://doi.org/10.5195/d3000.2015.29.CrossRefGoogle Scholar
  110. Sui J, Chen Z, Liu G, Dong X, Yu W, Wang J. Multifunctional Ag@ NaGdF4: Yb3+, Er3+ core-shell nanocomposites for dual-mode imaging and photothermal therapy. J Lumin. 2019;2019:357–64.  https://doi.org/10.1016/j.jlumin.2019.01.046.CrossRefGoogle Scholar
  111. Sun L, Chow LC. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater. 2008;24(1):111–6.  https://doi.org/10.1016/j.dental.2007.03.003.CrossRefPubMedGoogle Scholar
  112. Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci. 2012;5(9):8475–505.  https://doi.org/10.1039/C2EE22310D.CrossRefGoogle Scholar
  113. Tan J, Jin X. Monodisperse, colloidal and luminescent calcium fluoride nanoparticles via a citrate-assisted hydrothermal route. J Colloid Interface Sci. 2018;531:444–50.  https://doi.org/10.1016/j.jcis.2018.07.081.CrossRefPubMedGoogle Scholar
  114. Tang YA, Hu J, Elmenoufy AH, Yang X. Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl Mater Interfaces. 2015;7(22):12261–9.  https://doi.org/10.1021/acsami.5b03067.CrossRefPubMedGoogle Scholar
  115. Tarnuzzer RW, Colon J, Patil S, Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005;5(12):2573–7.  https://doi.org/10.1021/nl052024f.CrossRefPubMedGoogle Scholar
  116. Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Phys Lung Cell Mol Phys. 2008;294(2):L358–67.  https://doi.org/10.1152/ajplung.00323.2007.CrossRefGoogle Scholar
  117. Villa I, Vedda A, Cantarelli IX, Pedroni M, Piccinelli F, Bettinelli M, et al. 1.3 μm emitting SrF 2: Nd 3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 2015;8(2):649–65.  https://doi.org/10.1007/s12274-014-0549-1.CrossRefGoogle Scholar
  118. Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano. 2009;3(6):1580–6.  https://doi.org/10.1021/nn900491j.CrossRefPubMedGoogle Scholar
  119. Wang K, Ma J, He M, Gao G, Xu H, Sang J, et al. Toxicity assessments of near-infrared upconversion luminescent LaF3: Yb, Er in early development of zebrafish embryos. Theranostics. 2013;3(4):258.  https://doi.org/10.7150/thno.5701.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wawrzynczyk D, Bednarkiewicz A, Nyk M, Strek W, Samoc M. Neodymium (III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale. 2012;4(22):6959–61.  https://doi.org/10.1039/C2NR32203J.CrossRefPubMedGoogle Scholar
  121. Weber MJ. Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3. J Chem Phys. 1968;48(10):4774–80.  https://doi.org/10.1063/1.1668061.CrossRefGoogle Scholar
  122. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–68.  https://doi.org/10.1039/C4CS00392F.CrossRefGoogle Scholar
  123. Wysokińska E, Cichos J, Zioło E, Bednarkiewicz A, Strządała L, Karbowiak M, et al. Cytotoxic interactions of bare and coated NaGdF4: Yb3+: Er3+ nanoparticles with macrophage and fibroblast cells. Toxicol In Vitro. 2016;32:16–25.  https://doi.org/10.1016/j.tiv.2015.11.021.CrossRefPubMedGoogle Scholar
  124. Xiang Y, Cheng BR, Li DF, Zhou BX, Yang TF, Ding SS, et al. Facile one-step in-situ synthesis of type-II CeO2/CeF3 composite with tunable morphology and photocatalytic activity. Ceram Int. 2016;42(14):16374–81.  https://doi.org/10.1016/j.ceramint.2016.07.018.CrossRefGoogle Scholar
  125. Ximendes EC, Rocha U, Kumar KU, Jacinto C, Jaque D. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window. Appl Phys Lett. 2016;108(25):253103.  https://doi.org/10.1063/1.4954170.CrossRefGoogle Scholar
  126. Xing H, Bu W, Ren Q, Zheng X, Li M, Zhang S, et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials. 2012;33(21):5384–93.  https://doi.org/10.1016/j.biomaterials.2012.04.002.CrossRefPubMedGoogle Scholar
  127. Xu HH, Moreau JL, Sun L, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;29(32):4261–7.  https://doi.org/10.1016/j.biomaterials.2008.07.037.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Yang JM, Yang H, Lin L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano. 2011;5(6):5067–71.  https://doi.org/10.1021/nn201142f.CrossRefPubMedGoogle Scholar
  129. Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials. 2012;33(14):3733–42.  https://doi.org/10.1016/j.biomaterials.2012.01.063.CrossRefPubMedGoogle Scholar
  130. Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, et al. Hydrothermal synthesis of NaLuF4: 153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials. 2013;34(3):774–83.  https://doi.org/10.1016/j.biomaterials.2012.10.022.CrossRefPubMedGoogle Scholar
  131. Ye X, Chen J, Engel M, Millan JA, Li W, Qi L, et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nat Chem. 2013;5(6):466.  https://doi.org/10.1038/NCHEM.1651.CrossRefPubMedGoogle Scholar
  132. Yi GS, Chow GM. Colloidal LaF3: Yb, Er, LaF3: Yb, Ho and LaF3: Yb, Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem. 2005;15(41):4460–4.  https://doi.org/10.1039/B508240D.CrossRefGoogle Scholar
  133. Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A. 2016;104(11):2881–97.  https://doi.org/10.1002/jbm.a.35804.CrossRefPubMedGoogle Scholar
  134. Yu J, Yin W, Peng T, Chang YN, Zu Y, Li J, et al. Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF4: Yb, Er upconversion nanoparticles in mice via different administration routes. Nanoscale. 2017;9(13):4497–507.  https://doi.org/10.1039/C7NR00078B.CrossRefPubMedGoogle Scholar
  135. Zhang C, Lingdong S, Zhang Y, Chunhua Y. Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. J Rare Earths. 2010;28(6):807–19.  https://doi.org/10.1016/S1002-0721(09)60206-4.CrossRefGoogle Scholar
  136. Zhang LE, Zeng L, Pan Y, Luo S, Ren W, Gong A, et al. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers. Biomaterials. 2015;44:82–90.  https://doi.org/10.1016/j.biomaterials.2014.12.040.CrossRefPubMedGoogle Scholar
  137. Zheng X, Wang Y, Sun L, Chen N, Li L, Shi S, et al. TbF 3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res. 2016;9(4):1135–47.  https://doi.org/10.1007/s12274-016-1008-y.CrossRefGoogle Scholar
  138. Zhou S, Jiang G, Wei X, Duan C, Chen Y, Yin M. Pr3+-doped β-NaYF4 for temperature sensing with fluorescence intensity ratio technique. J Nanosci Nanotechnol. 2014;14(5):3739–42.  https://doi.org/10.1166/jnn.2014.8010.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. S. Pudovkin
    • 1
  • R. M. Rakhmatullin
    • 1
  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations