Role of Monoamine Oxidases in Heart Diseases

  • Vinayak Gupta
  • Vikas Arige
  • Nitish R. MahapatraEmail author


Monoamine oxidases (MAOs) are flavoenzymes that metabolize biogenic amines, dietary amines, and catecholamines in the brain and peripheral tissues. While MAOs are known to contribute to psychiatric and neurodegenerative (Parkinson’s and Alzheimer’s) diseases for a long time, recent studies have established their role in heart diseases as these enzymes potently generate reactive oxygen species (ROS) in cardiomyocytes via oxidative deamination of mainly norepinephrine and serotonin. Indeed, MAOs have emerged as important regulators of mitochondrial/endothelial/cardiac dysfunction, essential hypertension, ventricular hypertrophy, myocardial infarction, cardiomyocyte apoptosis, postischemic cardiac damage, and heart failure. Transcriptional and posttranscriptional regulation of MAOs (via certain transcription factors or microRNAs) may emerge as new therapeutic strategies for treatment of cardiovascular pathological conditions. The next-generation MAO inhibitors (that do not cause irreversible inhibition of MAOs) may also be useful for management of cardiovascular disease states involving dysregulated expression/activity of MAOs.


Cardiovascular Monoamine oxidase Reactive oxygen species Catecholamines Transcription factors microRNAs 



The authors are thankful to the researchers who contributed to studies on the monoamine oxidases. This work was supported by a grant from the Department of Biotechnology, Government of India, to NRM (project number: BT/PR5017/MED/30/756/2012). VG and VA received research fellowships from the Ministry of Human Resource Development, Government of India, and Department of Science and Technology, Government of India, respectively.

Conflict of Interest Statement

The authors declare that there is no conflict of interest.


  1. 1.
    Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology 25:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci U S A 88:3637–3641PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Finberg J (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143:133–152PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Grimsby J, Lan NC, Neve R, Chen K, Shih JC (1990) Tissue distribution of human monoamine oxidase A and B mRNA. J Neurochem 55:1166–1169PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Saura J, Richards JG, Mahy N (1994) Age-related changes on MAO in Bl/C57 mouse tissues: a quantitative radioautographic study. J Neural Transm Suppl 41:89–94PubMedPubMedCentralGoogle Scholar
  7. 7.
    Strolin Benedetti M, Thomassin J, Tocchetti P, Dostert P, Kettler R, Da Prada M (1994) Species differences in changes of heart monoamine oxidase activities with age. J Neural Transm Suppl 41:83–87PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gupta V, Khan AA, Sasi BK, Mahapatra NR (2015) Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 134:21–38PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Shih JC, Wu JB, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm (Vienna) 118:979–986CrossRefGoogle Scholar
  10. 10.
    Wong W, Ou X, Chen K, Shih J (2002) Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J Biol Chem 277:22222–22230PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara J, Kapur K, Bergmann S, Preisig M, Otowa T et al (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hampp G, Ripperger J, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer J et al (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bortolato M, Chen K, Shih J (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wang C, Billett E, Borchert A, Kuhn H, Ufer C (2013) Monoamine oxidases in development. Cell Mol Life Sci 70:599–630PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wu J, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen Y, Yin F, Liao C et al (2014) Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 124:2891–2908PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25:155–165PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas M, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F et al (2013) p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 18:5–18PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai E, Bedja D, De Mario A, Chen K, Gabrielson KL et al (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20:267–280PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pino R, Failli P, Mazzetti L, Buffoni F (1997) Monoamine oxidase and semicarbazide-sensitive amine oxidase activities in isolated cardiomyocytes of spontaneously hypertensive rats. Biochem Mol Med 62:188–196PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sturza A, Leisegang M, Babelova A, Schröder K, Benkhoff S, Loot A, Fleming I, Schulz R, Muntean D, Brandes R (2013) Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension 62:140–146PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sturza A, Duicu O, Vaduva A, Dănilă M, Noveanu L, Varró A, Muntean D (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93:555–561PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F (2014) Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 73:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Peña-Silva R, Miller J, Chu Y, Heistad D (2009) Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am J Physiol Heart Circ Physiol 297:H1354–H1360PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Poon C, Seto S, Au A, Zhang Q, Li R, Lee WYW, Leung GPH, Kong SK, Yeung JHK, Ngai SM et al (2010) Mitochondrial monoamine oxidase-A-mediated hydrogen peroxide generation enhances 5-hydroxytryptamine-induced contraction of rat basilar artery. Br J Pharmacol 161:1086–1098PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC et al (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bianchi P, Pimentel DR, Murphy MP, Colucci WS, Parini A (2005) A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J 19:641–643PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, Couderc B, Manni D, Korolchuk VI, Lezoualc’h F et al (2016) Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and Autophagosome clearance, leading to Cardiomyocyte necrosis and heart failure. Antioxid Redox Signal 25:10–27PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Frank D, Kuhn C, Brors B, Hanselmann C, Lüdde M, Katus HA, Frey N (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Petrak J, Pospisilova J, Sedinova M, Jedelsky P, Lorkova L, Vit O, Kolar M, Strnad H, Benes J, Sedmera D et al (2011) Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto-caval fistula model provides support for new potential therapeutic targets – monoamine oxidase A and transglutaminase 2. Proteome Sci 9:69PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C, Raimondi L, Nediani C (2016) Monoamine oxidase is Overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxidative Med Cell Longev 2016:4375418CrossRefGoogle Scholar
  34. 34.
    Deng AY (2007) Genetic basis of polygenic hypertension. Hum Mol Genet 16(Spec No. 2):R195–R202PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zeng C, Zhang M, Asico LD, Eisner GM, Jose PA (2007) The dopaminergic system in hypertension. Clin Sci 112:583–597PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Andrew R, Best SA, Watson DG, Midgley JM, Reid JL, Squire IB (1993) Analysis of biogenic amines in plasma of hypertensive patients and a control group. Neurochem Res 18:1179–1182PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Goldstein DS (1983) Plasma catecholamines and essential hypertension. An analytical review. Hypertension 5:86–99PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Grobecker G, Roizen MF, Weise V, Saavedra JM, Kopin IJ (1975) Sympathoadrenal medullary activity in young, spontaneously hypertensive rats. Nature 258:267–268PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fries RS, Mahboubi P, Mahapatra NR, Mahata SK, Schork NJ, Schmid-Schoenbein GW, O’Connor DT (2004) Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems. Hypertension 43:1301–1311PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Puig O, Wang I-M, Cheng P, Zhou P, Roy S, Cully D, Peters M, Benita Y, Thompson J, Cai T-Q (2010) Transcriptome profiling and network analysis of genetically hypertensive mice identifies potential pharmacological targets of hypertension. Physiol Genomics 42A:24–32PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Vega A, Chacón P, Monteseirín J, El Bekay R, Alvarez M, Alba G, Conde J, Martín-Nieto J, Bedoya FJ, Pintado E et al (2004) A new role for monoamine oxidases in the modulation of macrophage-inducible nitric oxide synthase gene expression. J Leukoc Biol 75:1093–1101PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Yasuhara H, Tonooka M, Wada I, Oguchi K, Sakamoto K, Kamijo K (1983) Hemodynamics and monoamine oxidase activity in spontaneously hypertensive rats (SHR). Jpn J Pharmacol 33:1057–1064PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Friese RS, Mahboubi P, Mahapatra NR, Mahata SK, Schork NJ, Schmid-Schönbein GW, O’Connor DT (2005) Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am J Hypertens 18:633–652PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Knoll J, Miklya I, Knoll B, Markó R, Rácz D (1996) Phenylethylamine and tyramine are mixed-acting sympathomimetic amines in the brain. Life Sci 58:2101–2114PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Blackwell B, Marley E, Ryle A (1964) Hypertensive crisis associated with monoamine-oxidase inhibitors. Lancet 1:722–723PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Raiteri M, Del Carmine R, Bertollini A, Levi G (1977) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol 41:133–143PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10:930–944PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H (2007) RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6:793–810PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Evans WE, Guy RK (2004) Gene expression as a drug discovery tool. Nat Genet 36:214–215PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ely D, Underwood A, Dunphy G, Boehme S, Turner M, Milsted A (2010) Review of the Y chromosome, Sry and hypertension. Steroids 75:747–753PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL (2004) Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 369:203–207PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang K, Rao F, Wang L, Rana BK, Ghosh S, Mahata M, Salem RM, Rodriguez-Flores JL, Fung MM, Waalen J et al (2010) Common functional genetic variants in catecholamine storage vesicle protein promoter motifs interact to trigger systemic hypertension. J Am Coll Cardiol 55:1463–1475PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Milsted A, Underwood AC, Dunmire J, DelPuerto HL, Martins AS, Ely DL, Turner ME (2010) Regulation of multiple renin-angiotensin system genes by Sry. J Hypertens 28:59–64PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Duncan J, Johnson S, Ou X-M (2012) Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther 6:112–122PubMedPubMedCentralGoogle Scholar
  57. 57.
    Menghini R, Marchetti V, Cardellini M, Hribal ML, Mauriello A, Lauro D, Sbraccia P, Lauro R, Federici M (2005) Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: a novel pathway linking obesity to atherosclerosis. Circulation 111:1946–1953PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kovanen L, Donner K, Partonen T (2015) SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS One 10:e0141001PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Shimoyama Y, Suzuki K, Hamajima N, Niwa T (2011) Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese. Transl Res 157:339–347PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shimoyama Y, Mitsuda Y, Tsuruta Y, Suzuki K, Hamajima N, Niwa T (2012) SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients. J Ren Nutr 22:114–119PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kilic U, Gok O, Bacaksiz A, Izmirli M, Elibol-Can B, Uysal O (2014) SIRT1 gene polymorphisms affect the protein expression in cardiovascular diseases. PLoS One 9:e90428PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A (2003) Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 284:F167–F174PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, Chrousos GP, Blackman MR (2005) Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J 19:1359–1361PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ammon HP, Müller AB (1985) Forskolin: from an ayurvedic remedy to a modern agent. Planta Med 51:473–477PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schlepper M, Thormann J, Mitrovic V (1989) Cardiovascular effects of forskolin and phosphodiesterase-III inhibitors. Basic Res Cardiol 84(Suppl 1):197–212PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dubey MP, Srimal RC, Nityanand S, Dhawan BN (1981) Pharmacological studies on coleonol, a hypotensive diterpene from Coleus forskohlii. J Ethnopharmacol 3:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wysham DG, Brotherton AF, Heistad DD (1986) Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase. Stroke 17:1299–1303PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ou X-M, Chen K, Shih JC (2004) Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem 279:21021–21028PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Chen K (2004) Organization of MAO A and MAO B promoters and regulation of gene expression. Neurotoxicology 25:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Shih JC, Chen K (2004) Regulation of MAO-A and MAO-B gene expression. Curr Med Chem 11:1995–2005PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Colbert MC, Hall DG, Kimball TR, Witt SA, Lorenz JN, Kirby ML, Hewett TE, Klevitsky R, Robbins J (1997) Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice. J Clin Invest 100:1958–1968PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kotake D, Sato T, Hirasawa N (2014) Retinoid signaling in pathological remodeling related to cardiovascular disease. Eur J Pharmacol 729:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Edelstein SB, Breakefield XO (1986) Monoamine oxidases A and B are differentially regulated by glucocorticoids and ‘aging’ in human skin fibroblasts. Cell Mol Neurobiol 6:121–150PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Buttgereit F, Burmester G-R, Lipworth BJ (2009) Inflammation, glucocorticoids and risk of cardiovascular disease. Nat Clin Pract Rheumatol 5:18–19PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Walker BR (2007) Glucocorticoids and cardiovascular disease. Eur J Endocrinol 157:545–559PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Barceló F, Ortiz-Lombardía M, Martorell M, Oliver M, Méndez C, Salas JA, Portugal J (2010) DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis. Biochemistry 49:10543–10552PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Choi ES, Nam JS, Jung JY, Cho NP, Cho SD (2014) Modulation of specificity protein 1 by mithramycin A as a novel therapeutic strategy for cervical cancer. Sci Rep 24:7162Google Scholar
  78. 78.
    Yao L, Dai X, Sun Y, Wang Y, Yang Q, Chen X, Liu Y, Zhang L, Xie W, Liu J (2018) Inhibition of transcription factor SP1 produces neuroprotective effects through decreasing MAO B activity in MPTP/MPP+ Parkinson’s disease models. J Neurosci Res 96:1663–1676PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yu Q, Huang Q, Du X, Xu S, Li M, Ma S (2018) Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson’s disease. Exp Neurol 302:145–154PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ahn SY, Cho CH, Park KG, Lee HJ, Park SK, Lee IK, Koh GY (2004) Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am J Pathol 164:1663–1672PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Orellana EA, Kasinski AL (2015) MicroRNAs in cancer: a historical perspective on the path from discovery to therapy. Cancers (Basel) 7:1388–1405CrossRefGoogle Scholar
  82. 82.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hartig SM, Hamilton MP, Bader DA, McGuire SE (2015) The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 26:733–745PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barwari T, Joshi A, Mayr M (2016) MicroRNAs in cardiovascular disease. J Am Coll Cardiol 68:2577–2584PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Titze-de-Almeida R, David C, Titze-de-Almeida SS (2017) The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res 34:1339–1363PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chaudhuri AD, Yelamanchili SV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1. PLoS One 8:e79579PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol 1182:289–305PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11:93–109PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    D’Alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F et al (2013) Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS One 8:e80345PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Roy S, Bantel H, Wandrer F, Schneider AT, Gautheron J, Vucur M, Tacke F, Trautwein C, Luedde T, Roderburg C (2017) miR-1224 inhibits cell proliferation in acute liver failure by targeting the antiapoptotic gene Nfib. J Hepatol 67:966–978PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Niu Y, Mo D, Qin L, Wang C, Li A, Zhao X, Wang X, Xiao S, Wang Q, Xie Y et al (2011) Lipopolysaccharide-induced miR-1224 negatively regulates tumour necrosis factor-α gene expression by modulating Sp1. Immunology 133:8–20PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Qian J, Li R, Wang Y-Y, Shi Y, Luan W-K, Tao T, Zhang J-X, Xu Y-C, You Y-P (2015) MiR-1224-5p acts as a tumor suppressor by targeting CREB1 in malignant gliomas. Mol Cell Biochem 403:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Nakano T, Nagatsu T, Higashida H (1985) Expression of A and B types of monoamine oxidase in differentiated neuroblastoma hybrid cells. J Neurochem 44:755–758PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Rațiu C, Uțu D, Petruș A, Norbert P, Olariu S, Duicu O, Sturza A, Muntean DM (2018) Monoamine oxidase inhibition improves vascular function and reduces oxidative stress in rats with lipopolysaccharide-induced inflammation. Gen Physiol Biophys 37:687–694PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Holschneider DP, Chen K, Seif I, Shih JC (2001) Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Brain Res Bull 56:453–462PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sims KB, de la Chapelle A, Norio R, Sankila EM, Hsu YP, Rinehart WB, Corey TJ, Ozelius L, Powell JF, Bruns G (1989) Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron 2:1069–1076PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Murphy DL, Sims KB, Karoum F, de la Chapelle A, Norio R, Sankila EM, Breakefield XO (1990) Marked amine and amine metabolite changes in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase. J Neurochem 54:242–247PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Holschneider DP, Scremin OU, Roos KP, Chialvo DR, Chen K, Shih JC (2002) Increased baroreceptor response in mice deficient in monoamine oxidase A and B. Am J Physiol Heart Circ Physiol 282:H964–H972PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Harrap SB, Wong ZYH, Stebbing M, Lamantia A, Bahlo M (2002) Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes. Physiol Genomics 8:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Brummett BH, Boyle SH, Siegler IC, Zuchner S, Ashley-Koch A, Williams RB (2008) Lipid levels are associated with a regulatory polymorphism of the monoamine oxidase-A gene promoter (MAOA-uVNTR). Med Sci Monit 14:CR57–CR61PubMedPubMedCentralGoogle Scholar
  109. 109.
    Camarena B, Santiago H, Aguilar A, Ruvinskis E, González-Barranco J, Nicolini H (2004) Family-based association study between the monoamine oxidase A gene and obesity: implications for psychopharmacogenetic studies. Neuropsychobiology 49:126–129PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Need AC, Ahmadi KR, Spector TD, Goldstein DB (2006) Obesity is associated with genetic variants that alter dopamine availability. Ann Hum Genet 70:293–303PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Fuemmeler BF, Agurs-Collins TD, McClernon FJ, Kollins SH, Kail ME, Bergen AW, Ashley-Koch AE (2008) Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity (Silver Spring) 16:348–355CrossRefGoogle Scholar
  112. 112.
    Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nöthen MM, Maffei P, Franke P, Fritze J et al (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Wu Y-H, Fischer DF, Swaab DF (2007) A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer’s disease patients. Brain Res 1167:13–19PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hotamisligil GS, Breakefield XO (1991) Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 49:383–392PubMedPubMedCentralGoogle Scholar
  116. 116.
    Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Feig DI, Kang D-H, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Muiya NP, Wakil S, Al-Najai M, Tahir AI, Baz B, Andres E, Al-Boudari O, Al-Tassan N, Al-Shahid M, Meyer BF et al (2014) A study of the role of GATA2 gene polymorphism in coronary artery disease risk traits. Gene 544:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Connelly JJ, Wang T, Cox JE, Haynes C, Wang L, Shah SH, Crosslin DR, Hale AB, Nelson S, Crossman DC et al (2006) GATA2 is associated with familial early-onset coronary artery disease. PLoS Genet 2:e139PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Westphal CH, Dipp MA, Guarente L (2007) A therapeutic role for sirtuins in diseases of aging? Trends Biochem Sci 32:555–560PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Jiang W (2008) Sirtuins: novel targets for metabolic disease in drug development. Biochem Biophys Res Commun 373:341–344PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Griffith GC (1960) Amine oxidase inhibitors; their current place in the therapy of cardiovascular diseases. Circulation 22:1156–1165PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vinayak Gupta
    • 1
    • 2
  • Vikas Arige
    • 1
  • Nitish R. Mahapatra
    • 1
    Email author
  1. 1.Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of BiotechnologyBennett UniversityGreater NoidaIndia

Personalised recommendations