Myocardial Oxidative Stress and Metabolic Diseases

  • Hassan I. H. El-SayyadEmail author


Aging, diabetes, obesity, atherosclerosis, hypertension, and dyslipidemia shared similar manifestations of cardiomyopathy. This disease is characterized by pathological, cytological, and molecular alterations of both cardiomyocytes and endothelial cells. The disease altered the cytoplasmic organelle structure and function such as mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. These involved dramatic changes of protein synthesis in endoplasmic reticulum, calcium storage in mitochondria, autophagy in lysosomes, and lipid metabolism in Golgi complex. Enhanced lipid peroxidation, oxidative stress, and release of free oxygen species are the main contributing factors of cell damage and cell death. This review summarized the concept of oxidative stress in cardiomyocytes and role of each cytoplasmic organelle in its development during progress of the disease.


Oxidative stress Myocardium Aging Diabetes Obesity Cytoplasmic organelles 


  1. 1.
    Misra MK, Sarwat M, Bhakuni P et al (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15(10):RA209–RA219PubMedGoogle Scholar
  2. 2.
    Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Obas V, Vasan RS (2018) The aging heart. Clin Sci (Lond) 132(13):1367–1382CrossRefGoogle Scholar
  4. 4.
    Mayyas F, Alzoubi KH, Al-Taleb Z (2017) Impact of high fat/high salt diet on myocardial oxidative stress. Clin Exp Hypertens 39(2):126–132PubMedCrossRefGoogle Scholar
  5. 5.
    Brito R, Castillo G, González J et al (2015) Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes 123(6):325–335PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao MX, Zhou B, Ling L et al (2017) Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death Dis 8(3):e2690PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    World Health Organization (WHO) (2011) and C. D. Bode, Media Centre-Fact Sheets, Diabetes.
  8. 8.
    Pasqualini FS, Nesmith AP, Horton RE et al (2016) Mechanotransduction and metabolism in Cardiomyocyte microdomains. Biomed Res Int 2016:4081638PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL et al (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89(4):1217–1267PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Varma U, Koutsifeli P, Benson VL et al (2018). Molecular mechanisms of cardiac pathology in diabetes – experimental insights Biochim Biophys Acta 1864(5 Pt B):1949–1959CrossRefGoogle Scholar
  11. 11.
    Shum M, Bellmann K, St-Pierre P et al (2016) Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia 59:592–603PubMedCrossRefGoogle Scholar
  12. 12.
    Mellor KM, Brimble MA, Delbridge LM (2015) Glucose as an agent of post-translational modification in diabetes—new cardiac epigenetic insights. Life Sci 129:48–53PubMedCrossRefGoogle Scholar
  13. 13.
    McLarty JL, Marsh SA, Chatham JC (2013) Post-translational protein modification by O-linked N-acetyl-glucosamine: its role in mediating the adverse effects of diabetes on the heart. Life Sci 92:621–627PubMedCrossRefGoogle Scholar
  14. 14.
    Pereira L, Ruiz-Hurtado G, Rueda A et al (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12(6):418–425CrossRefGoogle Scholar
  15. 15.
    Mishra PK, Ying W, Nandi SS et al (2017) Diabetic cardiomyopathy: an immunometabolic perspective. Front Endocrinol (Lausanne) 8:72. Scholar
  16. 16.
    Basha B, Samuel SM, Triggle CR et al (2012). Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?. Exp Diab Res Article ID 481840, 14 pages. Scholar
  17. 17.
    Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. End Rev 22(1):36–52CrossRefGoogle Scholar
  18. 18.
    Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76(1):8–18PubMedCrossRefGoogle Scholar
  19. 19.
    Yu L, Li S, Tang X et al (2017a) Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 22(7):942–954PubMedCrossRefGoogle Scholar
  20. 20.
    Pei Z, Deng Q, Babcock SA et al (2018) Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress. Toxicol Lett 284:10–20PubMedCrossRefGoogle Scholar
  21. 21.
    Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hall JE, do Carmo JM, da Silva AA et al (2015) Obesity –induced hypertension : interaction of neurohumoral and renal mechanisms. Circ Res 116(6):991–1006PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jiang Z, Hu Z, Zeng L et al (2011) The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med 50(8):907–917PubMedCrossRefGoogle Scholar
  24. 24.
    Sletten AC, Peterson LR, Schaffer JE (2018) Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med doi. Scholar
  25. 25.
    Choi CS, Savage DB, Kulkarni A et al (2007) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688PubMedCrossRefGoogle Scholar
  26. 26.
    Ly LD, Xu S, Choi SK et al (2017) Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49(2):e291PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Liu J, Lloyd SG (2013) High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr Res 33(4):311–321PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li SJ, Liu CH, Chu HP et al (2017) The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs-The role of ER stress and oxidative stress. Clin Nutr 36(3):760–767PubMedCrossRefGoogle Scholar
  29. 29.
    Hagenfeldt L, Wahren J, Pernow B et al (1972) Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 51:2324–2330PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 22(4):624–638CrossRefGoogle Scholar
  31. 31.
    Nishida K, Otsu K (2017) Inflammation and metabolic cardiomyopathy. Cardiovasc Res 113(4):389–398PubMedCrossRefGoogle Scholar
  32. 32.
    Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461PubMedCrossRefGoogle Scholar
  33. 33.
    Nakamura T, Furuhashi M, Li P et al (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140(3):338–348PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hotamisligil GS (2005) (2005) role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78PubMedCrossRefGoogle Scholar
  35. 35.
    Shih YC, Chen CL, Zhang Y et al (2018) Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res 122(8):1052–1068PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Veronica G, Esther RRM (2011) Metabolic syndrome: early development and aging. J Diabetes Metab S2:002. Scholar
  37. 37.
    Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yang X, Sreejayan N, Ren J (2005) Views from within and beyond: narratives of cardiac contractile dysfunction under senescence. Endocrine 26:127–137PubMedCrossRefGoogle Scholar
  39. 39.
    Csiszar A, Sosnowska D, Wang M et al (2012) Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 67(8):811–820PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nair S, Ren J (2012) Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 11(11):2092–2099PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wu J, Xia S, Kalionis B et al (2014) The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int 2014:615312PubMedPubMedCentralGoogle Scholar
  42. 42.
    DeQuach JA, Mezzano V, Miglani A et al (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5:e13039PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ouzounian M, Lee DS, Liu PP (2008) Diastolic heart failure: mechanisms and controversies. Nat Clin Pract Cardiovasc Med 5:375–386PubMedCrossRefGoogle Scholar
  44. 44.
    Bujak M, Ren G, Kweon HJ et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116(19):2127–2138PubMedCrossRefGoogle Scholar
  45. 45.
    Reed AL, Tanaka A, Sorescu D et al (2011) Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 301:H824–H831PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Triggle CR, Ding H (2011) The endothelium in compliance and resistance vessels. Front Biosci 3:730–744CrossRefGoogle Scholar
  47. 47.
    Suganya N, Bhakkiyalakshmi E, Sarada DV et al (2016) Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Br J Nutr 116(2):223–246PubMedCrossRefGoogle Scholar
  48. 48.
    El-Sayyad HI, Al-Haggar MS, El-Ghawet HA et al (2012) Cardiomyopathy and angiogenesis defects of Wistar rat fetuses of diabetic and hypercholesterolemic mothers. Nutrition 28(7–8):e33–e43PubMedCrossRefGoogle Scholar
  49. 49.
    El-Sayyad HIH, El-Sherbiny M, Sobh MA et al (2011) Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci 7:715–728PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    He H, Xu J, Warren CM et al (2012) Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120(15):3152–3162PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420PubMedPubMedCentralGoogle Scholar
  52. 52.
    Veilleux A, Grenier E, Marceau P et al (2014) Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler Thromb Vasc Biol 34:644–653PubMedCrossRefGoogle Scholar
  53. 53.
    Martin J, Collot-Teixeira S, McGregor L et al (2007) The dialogue between endothelial cells and monocytes/macrophages in vascular syndromes. Curr Pharm Des 13(17):1751–1759PubMedCrossRefGoogle Scholar
  54. 54.
    Voulgari C, Papadogiannis D, Tentolouris N (2010) Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 6:883–903PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Thomas D, Apovian C (2017) Macrophage functions in lean and obese adipose tissue. Metabolism 72:120–143PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang Y, Wang GZ, Rabinovitch PS et al (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and NF-κB-mediated inflammation in macrophages. Circ Res 114(3):421–433PubMedCrossRefGoogle Scholar
  57. 57.
    Castaneda OA, Lee SC, Ho CT et al (2017) Macrophage in oxidative stress and models to evaluate the antioxidant functions of dietary natural compounds. J Food Drug Anal 25(1):111–118PubMedCrossRefGoogle Scholar
  58. 58.
    Herrera MD, Mingorance C, Rodriguez-Rodriguez R et al (2010) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152PubMedCrossRefGoogle Scholar
  59. 59.
    Pierce GL, Larocca TJ (2008) Reduced vascular tetrahydrobiopterin (BH4) and endothelial function with ageing: is it time for a chronic BH4 supplementation trial in middle-aged and older adults? J Physiol 586(11):2673–2674PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Yang F, Yu X, Li T et al (2017) Exogenous H2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes. Am J Physiol Endocrinol Metab 312(3):E190–E203PubMedCrossRefGoogle Scholar
  61. 61.
    Schrieks IC, Nozza A, Stähli BE et al (2018) Adiponectin, free fatty acids, and cardiovascular outcomes in patients with type 2 diabetes and acute coronary syndrome. Diabetes Care pii:dc180158. Scholar
  62. 62.
    Mennerich D, Kellokumpu S, Kietzmann T (2018) Hypoxia and reactive oxygen species as modulators of endoplasmic reticulum and Golgi homeostasis. Antioxid Redox Signal doi. Scholar
  63. 63.
    Xu J, Wang G, Wang Y et al (2009) Diabetes and angiotensin II- induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 8A:1499–1512CrossRefGoogle Scholar
  64. 64.
    Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118(11):1808–1829PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hsu YJ, Hsu SC, Hsu CP et al (2017) Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 228:543–552PubMedCrossRefGoogle Scholar
  66. 66.
    Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response – a stress signaling pathway of the endoplasmic reticulum. J Chem Neuro 28(1):279–292PubMedCrossRefGoogle Scholar
  67. 67.
    Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res Fundam Mol Mech Mutagen 569(1–2):29–63CrossRefGoogle Scholar
  68. 68.
    Robinson PJ, Pringle MA, Woolhead CA et al (2017) Folding of single domain protein entering the endoplasmic reticulum precedes disulfide formation. J Biol Chem 292(17):6978–6986PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRefGoogle Scholar
  70. 70.
    Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090PubMedCrossRefGoogle Scholar
  71. 71.
    Schonthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo) 2012:857516Google Scholar
  72. 72.
    Van der Vlies D, Makkinje M, Jansens A et al (2003) Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Signal 5:381–387CrossRefGoogle Scholar
  73. 73.
    Moroder L, Besse D, Musiol HJ et al (1996) Oxidative folding of cystine-rich peptides vs. regioselective cysteine pairing strategies. Biopolymers 40:207–234PubMedCrossRefGoogle Scholar
  74. 74.
    Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117PubMedCrossRefGoogle Scholar
  75. 75.
    Malhotra JD, Kaufman RJ (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3:a004424PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zeeshan HM, Lee GH, Kim HR et al (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17:327PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal 21:396–413CrossRefGoogle Scholar
  78. 78.
    Bhandary B, Marahatta A, Kim HR et al (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yang Q, Gao H, Dong R et al (2016a) Sequential changes of endoplasmic reticulum stress and apoptosis in myocardial fibrosis of diabetes mellitus-induced rats. Mol Med Rep 13(6):5037–5044PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yang R, Jia Q, Liu XF et al (2016b) Effect of hydrogen sulfide on oxidative stress and endoplasmic reticulum stress indiabetic cardiomyopathy. Zhongguo Ying Yong Sheng Li Xue Za Zhi 32(1):8–12PubMedGoogle Scholar
  81. 81.
    Liu Z, Lv Y, Zhao N et al (2015) Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis 6:e1822CrossRefGoogle Scholar
  82. 82.
    Wang X, Xu L, Gillette TG et al (2018) The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 117:19–25PubMedCrossRefGoogle Scholar
  83. 83.
    Rieusset J (2018) The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis 9:388PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol 38:317–332Google Scholar
  85. 85.
    Fazi B, Melino S, De Rubeis S et al (2009) Acetylation of RTN-1C regulates the induction of ER stress by the inhibition of HDAC activity in neuroectodermal tumors. Oncogene 28:3814–3824PubMedCrossRefGoogle Scholar
  86. 86.
    Stankov K, Stanimirov B, Mikov M (2013) Cellular responses to endoplasmic reticulum stress. Biologia Serbica 35(1–2):15–23Google Scholar
  87. 87.
    Araki K, Nagata K (2012) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 4:a015438PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658PubMedCrossRefGoogle Scholar
  89. 89.
    Cominacini L, Mozzini C, Garbin U et al (2015) Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med 88(Pt B):233–242PubMedCrossRefGoogle Scholar
  90. 90.
    Sreedhar R, Giridharan VV, Arumugam S et al (2010) Role of MAPK-mediated endoplasmic reticulum stress signaling in the heart during aging in senescence-accelerated prone mice. Biofactors 42(4):368–375CrossRefGoogle Scholar
  91. 91.
    Wu Y, Reece EA, Zhong J et al (2016) Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 215(3):366.e1–366.e10PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Civelek M, Manduchi E, Riley RJ et al (2009) Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res 105(5):453–461PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Puthalakath H, O’Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349PubMedCrossRefGoogle Scholar
  94. 94.
    Ghemrawi R, Battaglia-Hsu SF, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cells 7(6):pii:E63. Scholar
  95. 95.
    Foufelle F, Ferré P (2007) Unfolded protein response: its role in physiology and physiopathology. Med Sci (Paris) 23(3):291–296CrossRefGoogle Scholar
  96. 96.
    Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63: 317–328PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Stanley WC (2001) Changes in cardiac metabolism: a critical step from stable angina to ischaemic cardiomyopathy. Eur Heart J Suppl 3(O):O2–O7CrossRefGoogle Scholar
  98. 98.
    Santulli G, Xie W, Reiken SR et al (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112(36):11389–11394PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Li Q, Su D, O’Rourke B et al (2015) Mitochondria-derived ROS bursts disturb Ca2+ cycling and induce abnormal automaticity in Guinea pig cardiomyocytes: a theoretical study. Am J Physiol Heart Circ Physiol 308(6):H623–H636PubMedCrossRefGoogle Scholar
  100. 100.
    García-Rúa V, Otero MF, Lear PV et al (2012) Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One 7:e37505PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Leichman JG, Aguilar D, King TM et al (2006) Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. Am J Clin Nutr 84:336–341PubMedCrossRefGoogle Scholar
  102. 102.
    Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med 356:1140–1151PubMedCrossRefGoogle Scholar
  103. 103.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223PubMedCrossRefGoogle Scholar
  104. 104.
    Boengler K, Kosiol M, Mayr M et al (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8(3):349–369PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Martín-Fernández B, Gredilla R (2016) Mitochondria and oxidative stress in heart aging. Age (Dordr) 38(4):225–238CrossRefGoogle Scholar
  106. 106.
    Olgar Y, Degirmenci S, Durak A et al (2018) Aging related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Exp Gerontol 110:172–181PubMedCrossRefGoogle Scholar
  107. 107.
    Joseph SK, Nakao SK, Sukumvanich S (2006) Reactivity of free thiol groups in type-I inositol trisphosphate receptors. Biochem J 393:575–582PubMedCrossRefGoogle Scholar
  108. 108.
    Murri M, El Azzouzi H (2018) MicroRNAs as regulators of mitochondrial dysfunction and obesity. Am J Physiol Heart Circ Physiol 13. Scholar
  109. 109.
    Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813(2011):1351–1359PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet 34(2003):267–273Google Scholar
  112. 112.
    Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116(3):615–622PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292(6):C1983–C1992PubMedCrossRefGoogle Scholar
  114. 114.
    Sibouakaz D, Othmani-Mecif K, Fernane A et al (2018) Biochemical and ultrastructural cardiac changes induced by high-fat diet in female and male Prepubertal rabbits. Anal Cell Pathol (Amst). 2018:6430696. Scholar
  115. 115.
    Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484PubMedCrossRefGoogle Scholar
  116. 116.
    Gredilla R, Bohr VA, Stevnsner T (2010) Mitochondrial DNA repair and association with aging – an update. Exp Gerontol 45(7–8):478–488PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Koshiba T, Detmer SA, Kaiser JT et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862PubMedCrossRefGoogle Scholar
  119. 119.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99PubMedCrossRefGoogle Scholar
  120. 120.
    Rojo M, Legros F, Chateau D et al (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674PubMedGoogle Scholar
  121. 121.
    Olichon A, Emorine LJ, Descoins E et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523(1–3):171–176PubMedCrossRefGoogle Scholar
  122. 122.
    Cipolat S, Martins de Brito O, Dal Zilio B et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610PubMedCrossRefGoogle Scholar
  124. 124.
    Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tsushima K, Bugger H, Wende AR et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMedCrossRefGoogle Scholar
  127. 127.
    Kang PT, Chen CL, Lin P et al (2018) Mitochondrial complex I in the post-ischemic heart reperfusion-mediated oxidative injury and protein cysteine sulfonation. J Mol Cell Cardiol pii:S0022-2828(18)30680–1Google Scholar
  128. 128.
    Tse G, Yan BP, Chan YW et al (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313Google Scholar
  129. 129.
    Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122(10):1460–1478PubMedCrossRefGoogle Scholar
  130. 130.
    Hassanpour SH, Dehghani MA, Karami SZ (2018) Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res 10(1):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Nishio S, Teshima Y, Takahashi N et al (2012) Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol 52(5):1103–1011PubMedCrossRefGoogle Scholar
  132. 132.
    Repnik U, Turk B (2010) Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion 10:662–669PubMedCrossRefGoogle Scholar
  133. 133.
    Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Mosc 70:200–214CrossRefGoogle Scholar
  134. 134.
    Kurz T, Eaton JW, Brunk UT (2010) Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid Redox Signal 13(4):511–523PubMedCrossRefGoogle Scholar
  135. 135.
    Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17:135–140PubMedCrossRefGoogle Scholar
  136. 136.
    Missiaen L, Raeymaekers L, Dode L et al (2004) SPCA1 pumps and Hailey– Hailey disease. Biochem Biophys Res Commun 322:1204–1213PubMedCrossRefGoogle Scholar
  137. 137.
    Joseph LC, Subramanyam P, Radlicz C et al (2016) Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm 13(8):1699–1706PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lane JD, Lucocq J, Pryde J et al (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156:495–509PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 854:328–335PubMedCrossRefGoogle Scholar
  140. 140.
    Seko Y, Fujimura T, Yao T et al (2015) Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci Rep 5:13737. Scholar
  141. 141.
    Sbodio JI, Snyder SH, Paul BD (2018) Golgi stress response programs cysteine metabolism to confer cytoprotectionin Huntington’s disease. Proc Natl Acad Sci U S A 115(4):780–785PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Burke MA, Ardehali H (2007) Mitochondrial ATP-binding cassette proteins. Transl Res 150(2):73–80PubMedCrossRefGoogle Scholar
  143. 143.
    Sousa L, Pessoa MTC, Costa TGF et al (2018) Iron overload impact on P-ATPases. Ann Hematol 97(3):377–385PubMedCrossRefGoogle Scholar
  144. 144.
    Patton SM, Piñero DJ, Surguladze N et al (2005) Subcellular localization of iron regulatory proteins to Golgi and ER membranes. J Cell Sci 118(Pt 19):4365–4373PubMedCrossRefGoogle Scholar
  145. 145.
    Warren CM, Ziyad S, Briot A et al (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7(307):ra1PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wang H, Joseph JA (2000) Mechanism of hydrogen peroxide-induced calcium deregulation in PC12 cells. Free Radic Biol Med 28:1222–1231PubMedCrossRefGoogle Scholar
  147. 147.
    Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRefGoogle Scholar
  148. 148.
    Görlach A, Bertram K, Hudecova S et al (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X et al (2017) Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 13(1):99–113PubMedCrossRefGoogle Scholar
  151. 151.
    Nakatogawa H, Suzuki K, Kamada Y et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467PubMedCrossRefGoogle Scholar
  152. 152.
    Iglewski M, Hill JA, Lavandero S et al (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12(6):418–425PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Terman A, Brunk UT (2005) The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ 14(2):107–114PubMedCrossRefGoogle Scholar
  154. 154.
    Terman A, Kurz T, Gustafsson B et al (2008) The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev 4(2):107–115PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sciarretta S, Volpe M, Sadoshima J (2012) Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome? Autophagy 8:1252–1254PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Sciarretta S, Boppana VS, Umapathi M et al (2015) Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc Diagn Ther 5(5):394–402PubMedPubMedCentralGoogle Scholar
  157. 157.
    Wang F, Jia J, Rodrigues B (2017) Autophagy, metabolic disease, and pathogenesis of heart dysfunction. Can J Cardiol 33(7):850–859PubMedCrossRefGoogle Scholar
  158. 158.
    Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852(2):225–231CrossRefGoogle Scholar
  159. 159.
    Laskar A, Miah S, Andersson RG et al (2010) Prevention of 7β-hydroxycholesterol-induced cell death by mangafodipir is mediated through lysosomal and mitochondrial pathways. Eur J Pharmacol 640(1–3):124–128PubMedCrossRefGoogle Scholar
  160. 160.
    Shirakabe A, Ikeda Y, Sciarretta S et al (2016) Aging and autophagy in the heart. Circ Res 118(10):1563–1576PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Yu Y, Wang L, Delguste F et al (2017b) Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radic Biol Med 112:397–410PubMedCrossRefGoogle Scholar
  162. 162.
    Petermann I, Mayer C, Stypmann J et al (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J 20(8):1266–1268PubMedCrossRefGoogle Scholar
  163. 163.
    Leon LJ, Gustafsson ÅB (2016) Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol 95:78–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations