Modulation of miRNA in Oxidative Stress-Induced Cardiac Remodeling

  • Sudhiranjan GuptaEmail author


Cardiac remodeling is the pathological ramification of myocardium resulting into various cardiac diseases. Oxidative stress represents a self-perpetuating mechanism by producing excess reactive oxygen species (ROS) and plays a critical role in cardiac remodeling. A redox state that maintains the homeostatic balance in the cell is critical in cardiac remodeling. A misbalance of redox state triggers cellular damage and promoting adverse signaling pathways leading to apoptosis. MicroRNAs (miRNAs) are short, 19–21 nucleotides, endogenous noncoding RNAs modulate gene regulation, elicits a vital role in cardiac remodeling including cardiac hypertrophy, fibrosis, myocardial injury and arrythmia via multiple mechanisms. Recent studies indicated that miRNAs are influencing the generation of ROS and modulate antioxidant defense mechanism by regulating antioxidative enzymes and are termed as “redoximiRs.” Here, I review the current progress and the mechanisms by which “redoximiRs” regulate cardiac remodeling.


Cardiac remodeling miRNA Oxidative stress 



The work was partly supported by funds from American Heart Association: Grant-in-Aid (17GRNT33670897) to S Gupta. The material is the result of work supported with resources and the use of facilities at the Central Texas Veterans Affairs Health Care System, Temple, Texas; VISN 17 Center of Excellence on Returning War Veterans, Waco, Texas, USA.


  1. 1.
    Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Afanas'ev I (2011) ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? Oxidative Med Cell Longev 2011:293769CrossRefGoogle Scholar
  4. 4.
    Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) α-Oxidative stress mediates tumor necrosis factorinduced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lee RC, Feinbaum RL, Ambros V (2003) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefGoogle Scholar
  8. 8.
    Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–H2190PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signaling in cardiac hypertrophy and heart failure. Heart 93(8):903–907PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cave A, Grieve D, Johar S, Zhang M, Shah AM (2005) NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2327–2334CrossRefGoogle Scholar
  13. 13.
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gongora MC, Qin Z, Laude K, Kim HW, McCann L, Folz JR, Dikalov S, Fukai T, Harrison DG (2006) Role of extracellular superoxide dismutase in hypertension. Hypertension 48:473–481PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Assem M, Teyssier JR, Benderitter M, Terrand J, Laubriet A, Javouhey A, David M, Rochette L (1997) Pattern of superoxide dismutase enzymatic activity and RNA changes in rat heart ventricles after myocardial infarction. Am J Pathol 151:549–555PubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo Z, Xia Z, Jiang J, McNeill JH (2007) Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-L-cysteine. Am J Physiol Heart Circ Physiol 292(4):H1728–H1736PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Nabeebaccus A, Zhang M, Shah AM (2011) NADPH oxidases and cardiac remodeling. Heart Fail Rev 16(1):5–12PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM (2013) NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 18(9):1024–1041PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799PubMedCrossRefGoogle Scholar
  22. 22.
    Ushio-Fukai M, Alexander RW, Akers M et al (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274(32):22699–22704PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Laderoute KR, Webster KA (1997) Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 80(3):336–344PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sag CM, Santos CX, Shah AM (2014) Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol 73:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Barančík M, Grešová L, Barteková M, Dovinová I (2016) Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res 65(Suppl 1):S1–S10Google Scholar
  26. 26.
    Clerk A, Michael A, Sugden PH (1998) Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J 333:581–589PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kang PM, Haunstetter A, Aoki H et al (2010) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125CrossRefGoogle Scholar
  28. 28.
    Wei C, Li L, Kim IK, Sun P, Gupta S (2014) NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic Res 48(3):282–291PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35(7):851–859PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Santillo M, Colantuoni A, Mondola P, Guida B, Damiano S (2015) NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 6:194PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40(4):477–484PubMedCrossRefGoogle Scholar
  32. 32.
    Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296PubMedCrossRefGoogle Scholar
  33. 33.
    Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826PubMedCrossRefGoogle Scholar
  34. 34.
    Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805PubMedCrossRefGoogle Scholar
  35. 35.
    Maytin M, Siwik DA, Ito M, Xiao L, Sawyer DB, Liao R, Colucci WS (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171PubMedCrossRefGoogle Scholar
  36. 36.
    Kang PT, Chen CL, Ohanyan V, Luther DJ, Meszaros JG, Chilian WM, Chen YR (2015) Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. J Mol Cell Cardiol 88:14–28PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Van Deel ED, Lu Z, Xu X, Zhu G, Hu X, Oury TD, Bache RJ, Duncker DJ, Chen Y (2008) Extracellular superoxide dismutase protects the heart against oxidative stress and hypertrophy after myocardial infarction. Free Radic Biol Med 44(7):1305–1313PubMedCrossRefGoogle Scholar
  38. 38.
    Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107(35):15565–15570PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhang M, Brewer AC, Schröder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107(42):18121–18126PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Creemers EE, Pinto Y (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89(2):265–272PubMedCrossRefGoogle Scholar
  42. 42.
    Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19:173–185PubMedCrossRefGoogle Scholar
  43. 43.
    Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S et al (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120:254–265PubMedCrossRefGoogle Scholar
  44. 44.
    Leask A (2007) TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212PubMedCrossRefGoogle Scholar
  45. 45.
    Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nediani C, Raimondi L, Borchi E, Cerbai E (2011) Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 14:289–331PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Tocchetti CG, Krieg T, Moens AL (2012) Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 53:1531–1540PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, McDermott BJ, Grieve D (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res 70:9287–9297PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907PubMedCrossRefGoogle Scholar
  50. 50.
    Kumar S, Gupta S (2011) Thymosin beta 4 prevents oxidative stress by targeting antioxidant and anti-apoptotic genes in cardiac fibroblasts. PLoS One 6(10):e26912PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Alpert JS (2000) Atrial fibrillation: a growth industry in the 21st century. Eur Heart J 21(15):1207–1208PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tse G, Yan BP, Chan YW, Tian XY, Huang Y (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313PubMedPubMedCentralGoogle Scholar
  53. 53.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Muc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics–2012 update: a report from the American Heart Association. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 125(1):e2–e220PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chang JP, Chen MC, Liu WH, Yang CH, Chen CJ, Chen YL, Pan KL, Tsai TH, Chang HW (2011) Atrial myocardial nox2 containing NADPH oxidase activity contribution to oxidative stress in mitral regurgitation: potential mechanism for atrial remodeling. Cardiovasc Pathol 20(2):99–106PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Aggarwal NT, Makielski JC (2013) Redox control of cardiac excitability. Antioxid Redox Signal 18(4):4324–4368CrossRefGoogle Scholar
  56. 56.
    Tse G, Yeo JM (2015) Conduction abnormalities and ventricular arrhythmogenesis: the roles of sodium channels and gap junctions. IJC Heart Vasc 9:75–82CrossRefGoogle Scholar
  57. 57.
    Tse G, Yan BP, Chan YWF, Tian XY, Huang Y (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313PubMedPubMedCentralGoogle Scholar
  58. 58.
    Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J (2005) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 112(9):1266–1273PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Adam O, Frost G, Custodis F, Sussman MA, Schäfers HJ, Böhm M, Laufs U (2007) Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 50(4):359–367PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, Alp NJ, Schotten U, Casadei B (2011) Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 124(10):1107–1117PubMedCrossRefGoogle Scholar
  61. 61.
    Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C et al (2005) A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 97:629–636PubMedCrossRefGoogle Scholar
  62. 62.
    Yeh YH, Kuo CT, Chan TH, Chang GJ, Qi XY, Tsai F, Nattel S, Chen WJ (2011) Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodeling in cultured atrial-derived myocytes. Cardiovasc Res 91(1):62–70PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P (2017) MicroRNA as a therapeutic target in cardiac remodeling. Biomed Res Int 2017:1278436PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kumarswamy R, Thum T (2013) Non-coding RNAs in cardiac remodeling and heart failure. Circ Res 113(6):676–689PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    De Rosa S, Curcio A, Indolfi C (2014) Emerging role of microRNAs in cardiovascular diseases. Circ J 78(3):567–575PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 64:4–11PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89CrossRefGoogle Scholar
  77. 77.
    Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta 1861(11 Pt A):2822–2829CrossRefGoogle Scholar
  78. 78.
    Shilo S, Roy S, Khanna S, Sen CK (2008) Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 28:471–477PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, Russell SJ, Kirkland JL, Blackwell TK, Kahn CR (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 16:336–347PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J (2018) MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 15:284–296PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Liu X, Tong Z, Chen K, Hu X, Jin H, Hou M (2018) The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int 2018:3452748PubMedPubMedCentralGoogle Scholar
  82. 82.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–442PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lee S, Lim S, Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Yun I, Han SM, Cha MJ, Choi E, Hwang KC (2015) ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions. Biochem Biophys Res Commun 465(3):349–355PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cha MJ, Jang JK, Ham O, Song BW, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Choi E, Jeon WM, Hwang HJ, Shin HT, Choi E, Hwang KC (2013) MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ. Biochem Biophys Res Commun 435(4):720–726PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125:92–104PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fiedler J, Thum T (2013) MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 33(2):201–205PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Greco S, Gaetano C, Martelli F (2014) HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 21(8):1202–1219PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bertero T, Robbe-Sermesant K, Le Brigand K, Ponzio G, Pottier N, Rezzonico R, Mazure NM, Barbry P, Mari B (2014) MicroRNA target identification: lessons from hypoxamiRs. Antioxid Redox Signal 21(8):1249–1268PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Azzouzi HE, Leptidis S, Doevendans PA, De Windt LJ (2015) HypoxamiRs: regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol Metab 26(9):502–508PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bernardo BC, Gao XM, Winbanks CE, Boey EJH, Tham YK, Kiriazis H et al (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 109:17615–17620PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779(11):682–691PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Malizia AP, Wang DZ (2011) MicroRNAs in cardiomyocyte development. Wiley Interdiscip Rev Syst Biol Med 3(2):183–190PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Lee EJ, Baek M, Nuovo GJ, Chen C, Schmittgen TD (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines and tumors. RNA 14:1–8Google Scholar
  99. 99.
    Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Davis J, Molkentin JD (2014) Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 70:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pottier N, Cauffiez C, Perrais M, Barbry P, Mari B (2014) FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends Pharmacol Sci 35:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wang J, Liew OW, Richards AM, Chen YT (2016) Overview of MicroRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5):pii: E749CrossRefGoogle Scholar
  104. 104.
    Creemers EE, van Rooij E (2016) Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circ Res 118(1):108–118PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jiang X, Tsitsiou E, Herrick SE, Lindsay MA (2010) MicroRNAs and the regulation of fibrosis. FEBS J 277(9):2015–2021PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    He Y, Huang C, Lin X, Li J (2013) MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95(7):1355–1359PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S (2013) NF-κB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228(7):1433–1442PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Li L, Bounds KR, Chatterjee P, Gupta S (2017) MicroRNA-130a, a potential antifibrotic target in cardiac fibrosis. J Am Heart Assoc 6(11):pii: e006763CrossRefGoogle Scholar
  109. 109.
    Deng Z, He Y, Yang X, Shi H, Shi A, Lu L, He L (2017) MicroRNA-29: a crucial player in fibrotic disease. Mol Diagn Ther 21(3):285–294PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Yang JJ, Tao H, Hu W, Liu LP, Shi KH, Deng ZY, Li J (2014) MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cell Signal 26(11):2381–2389PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Fierro-Fernández M, Busnadiego Ó, Sandoval P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML, Lamas S (2015) miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 16(10):1358–1377PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Civantos E, Bosch E, Ramirez E, Zhenyukh O, Egido J, Lorenzo O, Mas S (2017) Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diab Metab Syndr Obes 10:207–222CrossRefGoogle Scholar
  114. 114.
    Fierro-Fernández M, Miguel V, Lamas S (2016) Role of redoximiRs in fibrogenesis. Redox Biol 7:58–67PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Latella G (2018) Redox imbalance in intestinal fibrosis: beware of the TGFβ-1, ROS, and Nrf2 connection. Dig Dis Sci 63(2):312–320PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lew WY, Bayna E, DalleMolle E, Contu R, Condorelli G, Tang T (2014) Myocardial fibrosis induced by exposure to subclinical lipopolysaccharide is associated with decreased miR-29c and enhanced NOX2 expression in mice. PLoS One 9(9):e107556PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tian C, Gao L, Zimmerman MC, Zucker IH (2018) Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiacNrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol 314(5):H928–H939PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kim GH (2013) MicroRNA regulation of cardiac conduction and arrhythmias. Transl Res 161:381–392PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Lee S, Choi E, Cha MJ, Hwang KC (2014) Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 15(12):21754–21776PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, Li S, Xia Y, Wu G, Cheng X et al (2011) Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet 129:239–246PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Su Y, Li J, Chen F, Geng H, Pan M (2014) A polymorphism rs11614913 in pre-microRNAs may be associated with atrial fibrillation in Han Chinese population. J Am Coll Cardiol 64:GW25–e0274CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Central Texas Veterans Health Care SystemTempleUSA
  2. 2.VISN 17 Center of Excellence on Returning War VeteransDoris Miller VA Medical CenterWacoUSA
  3. 3.Department of BiologyBaylor UniversityWacoUSA

Personalised recommendations