The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional Opportunities

  • Ashok Sivasailam
  • Mahalaxmi Ganjoo
  • Varghese T. Panicker
  • Vivek V. Pillai
  • Srinivas GopalaEmail author


The cardiac tissue with its enormous task of continuous pumping relies heavily on the mitochondria. The different subpopulations of the mitochondria support the cardiac contractile function in various ways. These organelles are established as a continuous network in the cardiac tissue, i.e. in a highly dynamic state undergoing biogenesis, fusion, fission and degradation. This dynamic nature of the organelle helps in maintaining a healthy mitochondrial circuit which in turn is necessary for optimal cardiac functioning. There are increasing empirical evidences suggesting that the cardiovascular diseases are primarily associated with the decrease in the mitochondrial capacity of ATP synthesis, ROS handling and calcium homeostasis. This implies that the quantity and quality of mitochondria is crucial for its optimal fucntion, particularly during energy challenges faced by heart. Available data suggest that for prevention and therapy for most of the cardiovascular diseases, mitochondria could be an ideal target. There are various therapies that have focused on improving the mitochondrial efficiency through multifarious means, ranging from repairing the ROS-mediated damage to inducing the mitochondrial biogenesis and degradation, thus ensuring a newer and adept network of mitochondria. The mechanisms behind the compounds hitherto believed to be beneficial for the heart are also examined. This chapter summarizes the importance of mitochondria and its quality control in the cardiac tissue and some of the therapeutic interventions targeting the same.


Mitocondria ROS Mitochondrial dynamics Mitochondrial biogenesis Mitochondrial fission and fusion Mitophagy Mitochondrial therapies 


  1. 1.
    Friedland G (2009) Discovery of the function of the heart and circulation of blood. Cardiovasc J Afr 20:160PubMedPubMedCentralGoogle Scholar
  2. 2.
    Loe MJ, Edwards WD (2004) A light-hearted look at a lion-hearted organ (or, a perspective from three standard deviations beyond the norm) part 1 (of two parts). Cardiovasc Pathol 13:282–292PubMedCrossRefGoogle Scholar
  3. 3.
    Kolwicz SC, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616PubMedCrossRefGoogle Scholar
  4. 4.
    Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am J Phys Cell Phys 258:C377–C389CrossRefGoogle Scholar
  5. 5.
    Hom J, Sheu S-S (2009) Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Glancy B, Hartnell LM, Combs CA et al (2017) Power grid protection of the muscle mitochondrial reticulum. Cell Rep 19:487–496PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hoppel CL, Tandler B, Fujioka H et al (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jeffrey FMH, Diczku V, Sherry AD et al (1995) Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic Res Cardiol 90:388–396PubMedCrossRefGoogle Scholar
  9. 9.
    Schönekess BO (1997) Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart. J Mol Cell Cardiol 29:2725–2733PubMedCrossRefGoogle Scholar
  10. 10.
    Woods DC (2017) Mitochondrial heterogeneity: evaluating mitochondrial subpopulation dynamics in stem cells. Stem Cells Int 2017:1–7. Scholar
  11. 11.
    Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739PubMedGoogle Scholar
  12. 12.
    Schwarzer M, Schrepper A, Amorim PA et al (2013) Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 304:H529–H537PubMedCrossRefGoogle Scholar
  13. 13.
    Crochemore C, Mekki M, Corbière C et al (2015) Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles. Free Radic Res 49:331–337PubMedCrossRefGoogle Scholar
  14. 14.
    Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Phys 307:H1–H14CrossRefGoogle Scholar
  15. 15.
    Shimada T, Horita K, Murakami M et al (1984) Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res 238:577–582PubMedCrossRefGoogle Scholar
  16. 16.
    Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63PubMedCrossRefGoogle Scholar
  17. 17.
    Soubannier V, McBride HM (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta (BBA) – Mol Cell Res 1793:154–170CrossRefGoogle Scholar
  18. 18.
    Stefely JA, Kwiecien NW, Freiberger EC et al (2016) Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat Biotechnol 34:1191–1197PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890SPubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839PubMedCrossRefGoogle Scholar
  21. 21.
    Arany Z, Novikov M, Chin S et al (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci U S A 103:10086–10091PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    He X, Sun C, Wang F et al (2012) Peri-implantation lethality in mice lacking the PGC-1-related coactivator protein. Dev Dyn 241:975–983PubMedCrossRefGoogle Scholar
  23. 23.
    Lai L, Leone TC, Zechner C et al (2008) Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev 22:1948–1961PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Martin OJ, Ling L, Soundarapandian MM et al (2014) A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114:626–636PubMedCrossRefGoogle Scholar
  25. 25.
    Yun C, Yingqiu L, Dorn GW (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109:1327–1331CrossRefGoogle Scholar
  26. 26.
    Ge K, Guermah M, Yuan C-X et al (2002) Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis. Nature 417:563–567PubMedCrossRefGoogle Scholar
  27. 27.
    Andersson U, Scarpulla RC (2001) PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738–3749PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21:644–654PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ristevski S, O’Leary DA, Thornell AP et al (2004) The ETS transcription factor GABPα is essential for early embryogenesis. Mol Cell Biol 24:5844–5849PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147:321–334PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Dufour CR, Wilson BJ, Huss JM et al (2007) Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab 5:345–356PubMedCrossRefGoogle Scholar
  33. 33.
    Huss JM, Torra IP, Staels B et al (2004) Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem 277:40265–40274PubMedCrossRefGoogle Scholar
  35. 35.
    Sladek R, Bader JA, Giguère V (1997) The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol 17:5400–5409PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Vega RB, Kelly DP (1997) A role for estrogen-related receptor α in the control of mitochondrial fatty acid β-oxidation during brown adipocyte differentiation. J Biol Chem 272:31693–31699PubMedCrossRefGoogle Scholar
  37. 37.
    Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645PubMedCrossRefGoogle Scholar
  38. 38.
    Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mascaró C, Acosta E, Ortiz JA et al (1998) Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 273:8560–8563PubMedCrossRefGoogle Scholar
  40. 40.
    McMullen PD, Bhattacharya S, Woods CG et al (2014) A map of the PPARα transcription regulatory network for primary human hepatocytes. Chem Biol Interact 209:14–24PubMedCrossRefGoogle Scholar
  41. 41.
    Prosdocimo DA, John JE, Zhang L et al (2015) KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation. PPAR Res 2015:201625. Scholar
  42. 42.
    Prosdocimo DA, Anand P, Liao X et al (2014) Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 289:5914–5924PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    van der Meer DLM, Degenhardt T, Väisänen S et al (2010) Profiling of promoter occupancy by PPARα in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res 38:2839–2850PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886PubMedCrossRefGoogle Scholar
  45. 45.
    Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRefGoogle Scholar
  46. 46.
    Akimoto T, Pohnert SC, Li P et al (2005) Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593PubMedCrossRefGoogle Scholar
  47. 47.
    Little JP, Safdar A, Cermak N et al (2010) Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. Am J Phys Regul Integr Comp Phys 298:R912–R917Google Scholar
  48. 48.
    Shabana D, Konstandin MH, Bevan J et al (2014) Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases. Circ Res 115:376–387CrossRefGoogle Scholar
  49. 49.
    Cantó C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Coste A, Louet J-F, Lagouge M et al (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A 105:17187–17192PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26:1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Misko A, Sasaki Y, Tuck E et al (2012) Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci 32:4145–4155PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Züchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause charcot-marie-tooth neuropathy type 2A. Nat Genet 36:449–451PubMedCrossRefGoogle Scholar
  55. 55.
    Chen K-H, Guo X, Ma D et al (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6:872–883PubMedCrossRefGoogle Scholar
  56. 56.
    Cheng X, Zhou D, Wei J et al (2013) Cell-cycle arrest at G2/M and proliferation inhibition by adenovirus-expressed mitofusin-2 gene in human colorectal cancer cell lines. Neoplasma 60:620–626PubMedCrossRefGoogle Scholar
  57. 57.
    Gao Q, Wang X-M, Ye H-W et al (2012) Changes in the expression of cardiac mitofusin-2 in different stages of diabetes in rats. Mol Med Rep 6:811–814PubMedCrossRefGoogle Scholar
  58. 58.
    Guo X, Chen K-H, Guo Y et al (2007) Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101:1113–1122CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rehman J, Zhang HJ, Toth PT et al (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–2186PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Shen T, Zheng M, Cao C et al (2007) Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem 282:23354–23361PubMedCrossRefGoogle Scholar
  61. 61.
    Wang W, Zhu F, Wang S et al (2010) HSG provides antitumor efficacy on hepatocellular carcinoma both in vitro and in vivo. Oncol Rep 24:183–188PubMedGoogle Scholar
  62. 62.
    Zhang G-E, Jin H-L, Lin X-K et al (2013) Anti-tumor effects of Mfn2 in gastric cancer. Int J Mol Sci 14:13005–13021PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bach D, Pich S, Soriano FX et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism a novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197PubMedCrossRefGoogle Scholar
  64. 64.
    Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562PubMedCrossRefGoogle Scholar
  65. 65.
    Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192PubMedCrossRefGoogle Scholar
  66. 66.
    Eura Y, Ishihara N, Yokota S et al (2003) Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem (Tokyo) 134:333–344CrossRefGoogle Scholar
  67. 67.
    Liu R, Jin P, LiqunYu, et al (2014) Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One 9:e92810PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Papanicolaou KN, Ryosuke K, Ngoh GA et al (2012) Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res 111:1012–1026PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pich S, Bach D, Briones P et al (2005) The charcot–marie–tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405–1415PubMedCrossRefGoogle Scholar
  70. 70.
    Sebastián D, Hernández-Alvarez MI, Segalés J et al (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. PNAS 109:5523–5528PubMedCrossRefGoogle Scholar
  71. 71.
    Elachouri G, Vidoni S, Zanna C et al (2011) OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 21:12–20PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Frezza C, Cipolat S, de Brito OM et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189PubMedCrossRefGoogle Scholar
  73. 73.
    Meeusen S, DeVay R, Block J et al (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395PubMedCrossRefGoogle Scholar
  74. 74.
    Tsutsui H, Kinugawa S, Matsushima S (2008) Oxidative stress and mitochondrial DNA damage in heart failure. Circ J 72:A31–A37PubMedCrossRefGoogle Scholar
  75. 75.
    Varanita T, Soriano ME, Romanello V et al (2015) The Opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–844PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Delettre C, Lenaers G, Griffoin J-M et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210PubMedCrossRefGoogle Scholar
  77. 77.
    Delettre C, Griffoin JM, Kaplan J et al (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591PubMedCrossRefGoogle Scholar
  78. 78.
    Baker MJ, Tatsuta T, Langer T (2011) Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 3PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ishihara N, Otera H, Oka T et al (2012) Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal 19:389–399PubMedCrossRefGoogle Scholar
  83. 83.
    Ishihara N, Fujita Y, Oka T et al (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pellegrini L, Passer BJ, Canelles M et al (2001) PAMP and PARL, two novel putative metalloproteases interacting with the COOH-terminus of Presenilin-1 and -2. J Alzheimers Dis 3:181–190PubMedCrossRefGoogle Scholar
  85. 85.
    Song Z, Chen H, Fiket M et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jiang X, Jiang H, Shen Z et al (2014) Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci U S A 111:14782–14787PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Quirós PM, Ramsay AJ, Sala D et al (2012) Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31:2117–2133PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Laforge M, Rodrigues V, Silvestre R et al (2016) NF-κB pathway controls mitochondrial dynamics. Cell Death Differ 23:89–98PubMedCrossRefGoogle Scholar
  89. 89.
    Piquereau J, Caffin F, Novotova M et al (2012) Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 94:408–417PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    White KE, Davies VJ, Hogan VE et al (2009) OPA1 deficiency associated with increased autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest Ophthalmol Vis Sci 50:2567–2571PubMedCrossRefGoogle Scholar
  91. 91.
    Smirnova E, Shurland DL, Ryazantsev SN et al (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yoon Y, Pitts KR, Dahan S et al (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 140:779–793PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845PubMedCrossRefGoogle Scholar
  94. 94.
    Losón OC, Song Z, Chen H et al (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Otera H, Wang C, Cleland MM et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Niemann A, Ruegg M, La Padula V et al (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network. J Cell Biol 170:1067–1078PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Andres AM, Stotland A, Queliconi BB et al (2015) A time to reap, a time to sow: Mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 78:62–72PubMedCrossRefGoogle Scholar
  98. 98.
    Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22:1399–1401PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5PubMedCrossRefGoogle Scholar
  100. 100.
    Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437PubMedCrossRefGoogle Scholar
  102. 102.
    Ylä-Anttila P, Vihinen H, Jokitalo E et al (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185PubMedCrossRefGoogle Scholar
  103. 103.
    Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40PubMedCrossRefGoogle Scholar
  105. 105.
    English L, Chemali M, Duron J et al (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480–487PubMedCrossRefGoogle Scholar
  106. 106.
    Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nishino I, Fu J, Tanji K et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRefGoogle Scholar
  108. 108.
    Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906PubMedCrossRefGoogle Scholar
  109. 109.
    Thomas RL, Roberts DJ, Kubli DA et al (2013) Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev 27:1365–1377PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sciarretta S, Hariharan N, Monden Y et al (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32:275–281PubMedCrossRefGoogle Scholar
  111. 111.
    Xu X, Kobayashi S, Chen K et al (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288:18077–18092PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Xu X, Hua Y, Sreejayan N et al (2013) Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 5:61–63PubMedCrossRefGoogle Scholar
  113. 113.
    Dorn GW (2016) Parkin-dependent mitophagy in the heart. J Mol Cell Cardiol 95:42–49CrossRefGoogle Scholar
  114. 114.
    Gong G, Song M, Csordas G et al (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science:350–aad2459Google Scholar
  115. 115.
    Moyzis AG, Sadoshima J, Gustafsson ÅB (2014) Mending a broken heart: the role of mitophagy in cardioprotection. Am J Phys Heart Circ Phys 308:H183–H192Google Scholar
  116. 116.
    Shires SE, Gustafsson ÅB (2015) Mitophagy and heart failure. J Mol Med 93:253–262PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Thomas RL, Gustafsson AB (2013) Mitochondrial autophagy–an essential quality control mechanism for myocardial homeostasis. Circ J 77:2449–2454PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Narendra D, Tanaka A, Suen D-F et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Greene AW, Grenier K, Aguileta MA et al (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 340:471–475PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Gegg ME, Cooper JM, Chau K-Y et al (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131PubMedCrossRefGoogle Scholar
  124. 124.
    Poole AC, Thomas RE, Yu S et al (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5:e10054PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang X, Winter D, Ashrafi G et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Gladkova C, Maslen SL, Skehel JM et al (2018) Mechanism of parkin activation by PINK1. Nature 559:410PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Deas E, Piipari K, Machhada A et al (2014) PINK1 deficiency in β-cells increases basal insulin secretion and improves glucose tolerance in mice. Open Biol 4PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kubli DA, Cortez MQ, Moyzis AG et al (2015) PINK1 is dispensable for mitochondrial recruitment of parkin and activation of mitophagy in cardiac myocytes. PLoS One 10:e0130707PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hasson SA, Kane LA, Yamano K et al (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504:291–295PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tahrir FG, Knezevic T, Gupta MK et al (2017) Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. J Cell Physiol 232:797–805PubMedCrossRefGoogle Scholar
  131. 131.
    Chu CT, Bayır H, Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376–378PubMedCrossRefGoogle Scholar
  132. 132.
    Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185PubMedCrossRefGoogle Scholar
  133. 133.
    Quinsay MN, Thomas RL, Lee Y et al (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6:855–862PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for nix in autophagic maturation of erythroid cells. Nature 454:232–235PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Strappazzon F, Vietri-Rudan M, Campello S et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31:10249–10261PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Murakawa T, Yamaguchi O, Okamoto K et al (2015) The novel mitophagic receptor protein, Bcl2-like protein 13: new insights for the molecular mechanisms of the pathogenesis of heart disease. J Card Fail 21:S147CrossRefGoogle Scholar
  138. 138.
    Murakawa T, Yamaguchi O, Hashimoto A et al (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Cantó C, Houtkooper RH, Pirinen E et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nicotinamide Riboside and Mitochondrial Biogenesis – Full Text View –,
  141. 141.
    Chen R-J, Lee Y-H, Yeh Y-L et al (2017) Autophagy-inducing effect of pterostilbene: a prospective therapeutic/preventive option for skin diseases. J Food Drug Anal 25:125–133PubMedCrossRefGoogle Scholar
  142. 142.
    McCormack D, McFadden D (2012) Pterostilbene and cancer: current review. J Surg Res 173:e53–e61PubMedCrossRefGoogle Scholar
  143. 143.
    Berman AY, Motechin RA, Wiesenfeld MY et al (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1Google Scholar
  144. 144.
    Lightowlers RN, Chrzanowska-Lightowlers ZM (2014) Salvaging hope: is increasing NAD+ a key to treating mitochondrial myopathy? EMBO Mol Med 6:705–707PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Chung S, Yao H, Caito S et al (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501:79–90PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kundu JK, Shin YK, Kim SH et al (2006) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 27:1465–1474PubMedCrossRefGoogle Scholar
  147. 147.
    Ferrières J (2004) The French paradox: lessons for other countries. Heart 90:107–111PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hurst WJ, Glinski JA, Miller KB et al (2008) Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem 56:8374–8378PubMedCrossRefGoogle Scholar
  149. 149.
    Galleano M, Oteiza PI, Fraga CG (2009) Cocoa, chocolate, and cardiovascular disease. J Cardiovasc Pharmacol 54:483–490PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    (2009) Is cocoa good for the heart? Eur Heart J 30:2951–2952Google Scholar
  151. 151.
    Saleem TSM, Basha SD (2010) Red wine: a drink to your heart. J Cardiovasc Dis Res 1:171–176PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
  153. 153.
    Lanza IR, Zabielski P, Klaus KA et al (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ruetenik A, Barrientos A (2015) Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta 1847:1434–1447PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    López-Lluch G, Hunt N, Jones B et al (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103:1768–1773PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Cruzen C, Colman RJ (2009) Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med 25:733–743PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Han X, Ren J (2010) Caloric restriction and heart function: is there a sensible link? Acta Pharmacol Sin 31:1111–1117PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Bartolomé A, García-Aguilar A, Asahara S-I et al (2017) MTORC1 regulates both general autophagy and mitophagy induction after oxidative phosphorylation uncoupling. Mol Cell Biol 37:e00441-17PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Jung CH, Ro S-H, Cao J et al (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Hood DA (2009) Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 34:465–472PubMedCrossRefGoogle Scholar
  162. 162.
    Adhihetty PJ, Ljubicic V, Hood DA (2007) Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle. Am J Physiol Endocrinol Metab 292:E748–E755PubMedCrossRefGoogle Scholar
  163. 163.
    Huang C, Andres AM, Ratliff EP et al (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6:e20975PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang J, Wang X, Vikash V et al (2016) ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev 2016:4350965. Scholar
  165. 165.
    Chalker J, Gardiner D, Kuksal N et al (2017) Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria. Redox Biol 15:216–227PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Slade L, Chalker J, Kuksal N et al (2017) Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria. Biochim Biophys Acta Gen Subj 1861:1960–1969PubMedCrossRefGoogle Scholar
  167. 167.
    Kuksal N, Gardiner D, Qi D et al (2018) Partial loss of complex I due to NDUFS4 deficiency augments myocardial reperfusion damage by increasing mitochondrial superoxide/hydrogen peroxide production. Biochem Biophys Res Commun 498:214–220PubMedCrossRefGoogle Scholar
  168. 168.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang Q, Padayatti PS, Leung JH (2017) Proton-translocating nicotinamide nucleotide transhydrogenase: a structural perspective. Front Physiol 8Google Scholar
  170. 170.
    Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484PubMedCrossRefGoogle Scholar
  171. 171.
    Zinovkina LA (2018) Mechanisms of mitochondrial DNA repair in mammals. Biochem Mosc 83:233–249CrossRefGoogle Scholar
  172. 172.
    Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440PubMedCrossRefGoogle Scholar
  173. 173.
    Go Y-M, Chandler JD, Jones DP (2015) The cysteine proteome. Free Radic Biol Med 84:227–245PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-κB activation. Antioxid Redox Signal 11:2209–2222PubMedCrossRefGoogle Scholar
  175. 175.
    Martín MA, Gómez MA, Guillén F et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502:330–336PubMedCrossRefGoogle Scholar
  176. 176.
    Pereyra AS, Hasek LY, Harris KL et al (2017) Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 292:18443–18456PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ellis JM, Hasek LY, Yurovich EJ et al (2016) Mouse carnitine palmitoyltransferase 2 (CPT2) is required to sustain cardiac function. FASEB J 30:684.8–684.8Google Scholar
  178. 178.
    Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest 122:1958–1959PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Sack MN, Rader TA, Park S et al (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842PubMedCrossRefGoogle Scholar
  180. 180.
    Sihag S, Cresci S, Li AY et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46:201–212PubMedCrossRefGoogle Scholar
  181. 181.
    Nisoli E, Clementi E, Carruba MO et al (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806PubMedCrossRefGoogle Scholar
  182. 182.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium 52:22–27PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Sharov VG, Todor A, Khanal S et al (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42:150–158PubMedCrossRefGoogle Scholar
  185. 185.
    Sharov VG, Todor AV, Imai M et al (2005) Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Fail Rev 10:305–310PubMedCrossRefGoogle Scholar
  186. 186.
    Ghaffari S, Kazemi B, Toluey M et al (2013) The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc Ther 31:e34–e39PubMedCrossRefGoogle Scholar
  187. 187.
    Mewton N, Croisille P, Gahide G et al (2010) Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 55:1200–1205PubMedCrossRefGoogle Scholar
  188. 188.
    Piot C, Croisille P, Staat P et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481PubMedCrossRefGoogle Scholar
  189. 189.
    MITOCARE Study Group (2012) Rationale and design of the “MITOCARE” study: a phase II, multicenter, randomized, double-blind, placebo-controlled study to assess the safety and efficacy of TRO40303 for the reduction of reperfusion injury in patients undergoing percutaneous coronary intervention for acute myocardial infarction. Cardiology 123:201–207CrossRefGoogle Scholar
  190. 190.
    Naesens M, Kuypers DRJ, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4:481–508PubMedCrossRefGoogle Scholar
  191. 191.
    Tábara LC, Poveda J, Martin-Cleary C et al (2014) Mitochondria-targeted therapies for acute kidney injury. Expert Rev Mol Med 16:e13PubMedCrossRefGoogle Scholar
  192. 192.
    Guidelines for assignment to e-books | International ISBN Agency.
  193. 193.
    Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Molyneux SL, Florkowski CM, George PM et al (2008) Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol 52:1435–1441PubMedCrossRefGoogle Scholar
  195. 195.
    Okonko DO, Shah AM (2015) Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat Rev Cardiol 12:6–8PubMedCrossRefGoogle Scholar
  196. 196.
    Rosenfeldt F, Hilton D, Pepe S et al (2003) Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors 18:91–100PubMedCrossRefGoogle Scholar
  197. 197.
    Maranzana E, Barbero G, Falasca AI et al (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Chatfield KC, Sparagna GC, Sucharov CC et al (2014) Dysregulation of cardiolipin biosynthesis in pediatric heart failure. J Mol Cell Cardiol 74:251–259PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Saini-Chohan HK, Holmes MG, Chicco AJ et al (2009) Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res 50:1600–1608PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Sparagna GC, Lesnefsky EJ (2009) Cardiolipin remodeling in the heart. J Cardiovasc Pharmacol 53:290–301PubMedCrossRefGoogle Scholar
  201. 201.
    Frasier CR, Moukdar F, Patel HD et al (2013) Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovasc Res 98:47–55PubMedCrossRefGoogle Scholar
  202. 202.
    Kloner RA, Hale SL, Dai W et al (2012) Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc 1:e001644PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Sloan RC, Moukdar F, Frasier CR et al (2012) Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. J Mol Cell Cardiol 52:1009–1018PubMedCrossRefGoogle Scholar
  204. 204.
    Eirin A, Ebrahimi B, Zhang X et al (2014) Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res 103:461–472PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Siegel MP, Kruse SE, Percival JM et al (2013) Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 12:763–771PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Szeto HH, Liu S, Soong Y et al (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol 22:1041–1052PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Agadjanyan M, Vasilevko V, Ghochikyan A et al (2003) Nutritional supplement (NT Factor™) restores mitochondrial function and reduces moderately severe fatigue in aged subjects. J Chronic Fatigue Syndr 11:23–36CrossRefGoogle Scholar
  208. 208.
    Nicolson GL (2010) Lipid replacement therapy: a nutraceutical approach for reducing cancer-associated fatigue and the adverse effects of cancer therapy while restoring mitochondrial function. Cancer Metastasis Rev 29:543–552PubMedCrossRefGoogle Scholar
  209. 209.
    Ellithorpe RR, Settineri RA, Nicolson GL et al (2003) Pilot study: reduction of fatigue by use of a dietary supplement containing glycophospholipids. J Am Nutraceut Assoc 6(1):23-8Google Scholar
  210. 210.
    Cantó C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Hsu C-P, Yamamoto T, Oka S et al (2014) The function of nicotinamide phosphoribosyltransferase in the heart. DNA Repair (Amst) 23:64–68CrossRefGoogle Scholar
  212. 212.
    Khan NA, Auranen M, Paetau I et al (2014) Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med 6:721–731PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Martens CR, Denman BA, Mazzo MR et al (2018) Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD + in healthy middle-aged and older adults. Nat Commun 9:1286PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Diguet N, Trammell SAJ, Tannous C et al (2018) Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137:2256–2273PubMedCrossRefGoogle Scholar
  215. 215.
    Emani SM, Piekarski BL, Harrild D et al (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154:286–289PubMedCrossRefGoogle Scholar
  216. 216.
    Kaza AK, Wamala I, Friehs I et al (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153:934–943PubMedCrossRefGoogle Scholar
  217. 217.
    Masuzawa A, Black KM, Pacak CA et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H966–H982PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and Mitophagy in cardiovascular disease. Circ Res 120(11):1812–1824PubMedCrossRefGoogle Scholar
  219. 219.
    Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci 110(21):8638–8643PubMedCrossRefGoogle Scholar
  220. 220.
    Ferrero ME, Bertelli AE, Fulgenzi A, Pellegatta F, Corsi MM, Bonfrate M, Ferrara F, De Caterina R, Giovannini L, Bertelli A (1998) Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am J Clin Nutr 68(6):1208–1214PubMedCrossRefGoogle Scholar
  221. 221.
    Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95Google Scholar
  222. 222.
    Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6(2):109PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Tribble DL (1999) Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E, and β-carotene. Circulation 99(4):591–595PubMedCrossRefGoogle Scholar
  224. 224.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2015) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases.Sao Paulo Med J 133(2):164–165PubMedCrossRefGoogle Scholar
  225. 225.
    Kaimoto S, Hoshino A, Ariyoshi M, Okawa Y, Tateishi S, Ono K, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S (2017) Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Phys Heart Circ Phys 312(2):H305–H313Google Scholar
  226. 226.
    Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426(1):1–7PubMedCrossRefGoogle Scholar
  227. 227.
    Cooper JM, Schapira AHV (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. Mitochondrion 7:S127–S135PubMedCrossRefGoogle Scholar
  228. 228.
    Koh S-H, Choi H, Park H-H, Lee K-Y, Lee YJ, Kim SH (2010) Neuroprotective effects of coenzyme Q10 against beta-amyloid–induced neural stem cell death. Alzheimers Dement 6(4):S209CrossRefGoogle Scholar
  229. 229.
    Dumont M, Kipiani K, Yu F, Wille E, Katz M, Calingasan NY, Gouras GK, Lin MT, Beal MF (2011) Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 27(1):211–223PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashok Sivasailam
    • 1
  • Mahalaxmi Ganjoo
    • 1
  • Varghese T. Panicker
    • 2
  • Vivek V. Pillai
    • 2
  • Srinivas Gopala
    • 1
    Email author
  1. 1.Department of BiochemistrySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia
  2. 2.Department of Cardiovascular and Thoracic SurgerySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia

Personalised recommendations