Myocardial Injury Secondary to Intestinal Ischemia/Reperfusion or Microbiota Disturbance: Preventive and Therapeutic Concerns

  • Emmanuel E. Douzinas
  • Aikaterini Apeiranthitis


The cardiovascular disease of atherosclerosis (myocardial ischemia and cerebrovascular disease) is the principal cause of death globally. Remote organ ischemic events or remote organ underlying disturbances and pathology may either injure the heart acutely or contribute to cardiovascular disease chronically. The most typical remote organ system that may provoke such effects to the heart is the intestine, either due to (a) thrombotic disease of its vasculature, producing acutely intestinal ischemia, or (b) gut-originated disturbance, deteriorating atherosclerosis. In the first case, at reperfusion, the heart acutely becomes a victim, causing circulatory shock due to myocardial ischemic changes. In the second case, when the intestinal microbial community has altered from symbiotic to dysbiotic, metabolites are composed in the intestine, resulting to chronic advance of atherosclerosis and CVD worsening. Specifically, food phosphatidylcholine is metabolized to TMA (trimethylamine) in the intestine, which is transformed in the liver to TMAO (TMA-N-oxide). Interest about TMAO is rapidly growing. This substance is being studied thoroughly, in an effort to understand and explain its adverse cardiovascular effects, the so-called cardio-intestinal axis. It appears that there exist many sites for possible therapeutic interventions to limit its effect.


Ischemia/reperfusion injury Intestinal postischemic shock Cardiovascular disease Microbiota Phosphatidylcholine Lecithin Trimethylamine Trimethylamine-N-oxide 



Cardiovascular disease


Flavin-containing monooxygenases










  1. 1.
    Khatri JJ, Johnson C, Magid R et al (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109:520–525PubMedCrossRefGoogle Scholar
  2. 2.
    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Witztum JL, Steinberg D (1991) Role of oxidized low-density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rajagopalan S, Meng XP, Ramasamy S et al (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Harward TR, Brooks DL, Flynn TC et al (1993) Multiple organ dysfunction after mesenteric artery revascularization. J Vasc Surg 18:459–469PubMedCrossRefGoogle Scholar
  6. 6.
    Haglund U, Lundgren O (1978) Intestinal ischemia and shock factors. Fed Proc 37:2729–2733PubMedGoogle Scholar
  7. 7.
    Marston A (1989) Vascular occlusion. In: Marston A, Bulkley GR, Fiddian-Green RG et al (eds) Splanchnic ischemia and multiple organ failure. Edward Arnold, London, pp 51–71Google Scholar
  8. 8.
    Yao YM, Bahrami S, Redl H et al (1996) Monoclonal antibody to tumor necrosis factor-α attenuates hemodynamic dysfunction secondary to intestinal ischemia/reperfusion in rats. Crit Care Med 24:1547–1553PubMedCrossRefGoogle Scholar
  9. 9.
    Horton JW, White DJ (1993) Lipid peroxidation contributes to cardiac deficits after ischemia and reperfusion of the small bowel. Am J Phys 264:H1686–H1692Google Scholar
  10. 10.
    Horton JW, White DJ (1991) Cardiac contractile injury after intestinal ischemia-reperfusion. Am J Phys 261:1164–1170Google Scholar
  11. 11.
    Douzinas EE, Pitaridis MT, Patsouris E et al (2003) Myocardial ischemia in intestinal postischemic shock: the effect of hypoxemic reperfusion. Crit Care Med 31:2183–2189PubMedCrossRefGoogle Scholar
  12. 12.
    Kalogeris T, Baines CP, Krenz M et al (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Carden DL, Granger DN (2000) Pathophysiology of ischemia-reperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  14. 14.
    He GZ, Dong LG, Chen XF et al (2011) Lymph duct ligation during ischemia/reperfusion prevents pulmonary dysfunction in a rat model with omega-3 polyunsaturated fatty acid and glutamine. Nutrition 27:604–614PubMedCrossRefGoogle Scholar
  15. 15.
    Santora RJ, Lie ML, Grigoryev DN et al (2010) Therapeutic distant organ effects of regional hypothermia during mesenteric ischemia reperfusion injury. J Vasc Surg 52:1003–1014PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Esme H, Fidan H, Koken T et al (2006) Effect of lung ischemia-reperfusion on oxidative stress parameters of remote tissues. Eur J Cardiothorac Surg 29:294–298PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hirsch J, Niemann CU, Hansen KC et al (2008) Alterations in the proteome of pulmonary alveolar type II cells in the rat after hepatic ishchemia-reperfusion. Crit Care Med 36:1846–1854PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Barry MC, Wang JH, Kelly CJ et al (1997) Plasma factors augment neutrophil and endothelial cell activation during aortic surgery. Eur J Vasc Endovasc Surg 13:381–387PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80PubMedCrossRefGoogle Scholar
  20. 20.
    Zununi Vahed S, Barzegari A, Zuluaga M et al (2018) Myocardial infarction and gut microbiota: an incidental connection. Pharmacol Res 129:308–317PubMedCrossRefGoogle Scholar
  21. 21.
    Griffin JL, Wang X, Stanley E (2015) Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet 8:187–191PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mazidi M, Rezaie P, Kengne AP et al (2016) Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 10(2 Suppl 1):S150–S157PubMedCrossRefGoogle Scholar
  23. 23.
    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lam V, Su J, Koprowski S, Hsu A et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4):1727–1735PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1131PubMedCrossRefGoogle Scholar
  26. 26.
    Dumas ME, Barton RH, Toye A et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103:12511–12516PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tang WH, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li XS, Obeid S, Klingenberg R et al (2017) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38(11):814–824PubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–124PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Douzinas EE, Kollias S, Tiniakos D et al (2004) Hypoxemic reperfusion after 120 mins of intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med 32:2279–2283PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Doig CJ, Sutherland LR, Sandham JD et al (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158:444–451PubMedCrossRefGoogle Scholar
  33. 33.
    Cirera I, Bauer TM, Navasa M et al (2001) Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 34:32–37PubMedCrossRefGoogle Scholar
  34. 34.
    Deitch EA (2002) Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery 131:241–244PubMedCrossRefGoogle Scholar
  35. 35.
    Riddington DW, Venkatesh B, Boivin CM et al (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012PubMedCrossRefGoogle Scholar
  36. 36.
    Krack A, Sharma R, Figulla HR et al (2005) The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J 26:2368–2374PubMedCrossRefGoogle Scholar
  37. 37.
    Kim MS, Hwang SS, Park EJ et al (2013) Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep 5:765–775PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nagatomo Y, Tang WH (2015) Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 21(12):973–980. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Grayston JT, Kronmal RA, Jackson LA et al (2005) Azithromycin for the secondary prevention of coronary events. N Engl J Med 352:1637–1645PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cannon CP, Braunwald E, McCabe CH et al (2005) Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N Engl J Med 352:1646–1654PubMedCrossRefGoogle Scholar
  41. 41.
    Kalambokis GN, Mouzaki A, Rodi M et al (2012) Rifaximin improves systemic hemodynamics and renal function in patients with alcohol-related cirrhosis and ascites. Clin Gastroenterol Hepatol 10:815–818PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang C, Li S, Yang L et al (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163–2173PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Miao J, Ling AV, Manthena PV et al (2015) Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6:6498PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Worrier M, Shih DM, Burrows AC et al (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10(3):S2211–S1247Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Emmanuel E. Douzinas
    • 1
  • Aikaterini Apeiranthitis
    • 2
  1. 1.3rd Department of Critical Care, Evgenidio HospitalAthens University School of MedicineAthensGreece
  2. 2.2nd Department of Internal MedicineEvangelismos HospitalAthensGreece

Personalised recommendations