New Technologies in Drug Development Provide New Hope in Targeting of Dysregulated Redox Signalling in Cardiovascular Disease

  • Soloman Saleh
  • Kristen Bubb
  • Gemma A. FigtreeEmail author


Ever-accumulating evidence supports the pivotal role of dysregulated redox signalling in a broad spectrum of cardiovascular disease and degenerative ageing. Until now, therapeutic strategies have involved non-specific dietary antioxidants which have failed to demonstrate clinical benefits. Indirect success has been seen in the context of effective receptor-based pharmacotherapies such as antagonists of angiotensin or β1-adrenergic signalling. A major challenge has been to successfully target key subcellular compartments, each with separate redox microenvironments, but communicating with each other through a network of signalling pathways and cascades. Caveolar, mitochondrial, inflammasome, and transcriptional regulation have all proven to have redox-sensitive elements. The expanding ‘tool box’ available in the modern drug development field has opened the door for new approaches to treating or even reversing dysregulated redox signalling in these microdomains. Small molecules, novel genetic vectors, and biologics combined with nanoparticle delivery mechanisms are all emerging approaches to tackle shortcomings of our existing pharmacological toolset. This chapter reviews recent advances in molecular targets of cardiovascular therapy, emerging technologies for their delivery, and approaches in subcellular targeting of pharmaceuticals.


Redox signaling Reactive oxygen species Caveolae Drug development Nitroso-redox balance Mitochondria Mitochondrial targeting Inflammasome Nanoparticles microRNA Gene therapy Micropeptide therapy 


  1. 1.
    Abe J, Yamada Y, Takeda A, Harashima H (2017) P2537Cardiac progenitor cells with resveratrol delivered into mitochondria can ameliorate survival of doxorubicin-induced cardiomyopathy mouse via mitochondrial activation of damaged myocardium. Eur Heart J 38(suppl_1):ehx502.P2537–ehx2502.P2537.
  2. 2.
    Abrahao TB, Griendling KK (2015) Nuclear factor (erythroid-derived 2)-like 2, the brake in oxidative stress that nicotinamide adenine dinucleotide phosphate-oxidase-4 needs to protect the heart. Hypertension 65(3):499–501. Scholar
  3. 3.
    Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z et al (2017) Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 52:81–91. Scholar
  4. 4.
    Altenhöfer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Athyros VG, Katsiki N, Karagiannis A, Mikhailidis DP (2015) Short-, mid-, and long-term benefits of peri-procedural high-intensity statin administration in patients undergoing percutaneous coronary intervention. Current Medical Research and Opinion 31(2):191–5PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Azevedo C, Macedo MH, Sarmento B (2018) Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today 23(5):944–959. Scholar
  7. 7.
    Bae Y, Jung MK, Song SJ, Green ES, Lee S, Park H-S et al (2017) Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion 37:27–40. Scholar
  8. 8.
    Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD et al (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 24(8):1250–1261. Scholar
  9. 9.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941. Scholar
  10. 10.
    Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L (2018) Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol. Scholar
  11. 11.
    Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA (2017a) Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 109:61–74. Scholar
  12. 12.
    Bubb KJ, Kok C, Tang O, Rasko NB, Birgisdottir AB, Hansen T et al (2017b) The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling. Free Radic Biol Med 108:585–594. Scholar
  13. 13.
    Bubb KJ, Drummond GR, Figtree GA (2019) New opportunities for targeting redox dysregulation in cardiovascular disease. Cardiovasc Res cvz183.
  14. 14.
    Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins J-F et al (2018) Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res 114(12):1629–1641. Scholar
  15. 15.
    Bundgaard H, Axelsson A, Hartvig Thomsen J, Sørgaard M, Kofoed KF, Hasselbalch R et al (2017) The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial. Eur J Heart Fail 19(4):566–575. Scholar
  16. 16.
    Cannavo A, Koch WJ (2017) Targeting β3-adrenergic receptors in the heart: selective agonism and β-blockade. J Cardiovasc Pharmacol 69(2):71PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen Z, Oliveira SDS, Zimnicka AM, Jiang Y, Sharma T, Chen S et al (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29(10):1190–1202. Scholar
  18. 18.
    Cheng JP, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS et al (2015) Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 211(1):53–61PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cheng JP, Nichols BJ (2016) Caveolae: one function or many? Trends Cell Biol 26(3):177–189PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431. Scholar
  21. 21.
    Cifuentes-Pagano ME, Meijles DN, Pagano PJ (2015) Nox inhibitors & therapies: rational design of peptidic and small molecule inhibitors. Curr Pharm Des 21(41):6023–6035PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248. Scholar
  23. 23.
    Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E et al (2015) Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med 88:233–242. Scholar
  24. 24.
    Dai H, Sinclair DA, Ellis JL, Steegborn C (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 188:140–154. Scholar
  25. 25.
    Daubert MA, Yow E, Dunn G, Barnhart H, Douglas P, Udelson J et al (2016) Effects of a novel tetrapeptide in heart failure with reduced ejection fraction (HFREF): a phase I randomized, placebo-controlled trial of elamipretide. J Am Coll Cardiol 67(13 Supplement):1283CrossRefGoogle Scholar
  26. 26.
    Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane-wit D et al (2014) Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 28(2):908–922. Scholar
  27. 27.
    Dudek J, Hartmann M, Rehling P (2018) The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta (BBA) – Mol Basis Dis. Scholar
  28. 28.
    Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C et al (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5:3065. Scholar
  29. 29.
    Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ezzati M, Obermeyer Z, Tzoulaki I, Mayosi BM, Elliott P, Leon DA (2015) Contributions of risk factors and medical care to cardiovascular mortality trends. Nat Rev Cardiol 12(9):508PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120(4):713–735CrossRefGoogle Scholar
  32. 32.
    Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR et al (2016) Aging promotes sirtuin 3–dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol 68(8):1887–1898PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Furukawa R, Yamada Y, Kawamura E, Harashima H (2015) Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 57:107–115. Scholar
  34. 34.
    Galougahi KK, Liu CC, Gentile C, Kok C, Nunez A, Garcia A et al (2014) Glutathionylation mediates angiotensin II–Induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc 3(2):e000731PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Garcia V, Sessa WC (2019) Endothelial nitric oxide synthase (eNOS): perspective and recent developments. Br J Pharmacol 176(2):189–96Google Scholar
  36. 36.
    Goldsmith SR, Bart BA, Pin IL (2018) Neurohormonal imbalance: a neglected problem—and potential therapeutic target—in acute heart failure. Curr Probl Cardiol 43(7):294–304PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2(29).
  38. 38.
    Gray SP, Jha JC, Kennedy K, Van Bommel E, Chew P, Szyndralewiez C et al (2017) Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno-and atheroprotection even in established micro-and macrovascular disease. Diabetologia 60(5):927–937PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gray SP, Marco ED, Kennedy K, Chew P, Okabe J, El-Osta A et al (2016) Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 36(2):295–307. Scholar
  40. 40.
    Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS et al (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387(10024):1178–1186. Scholar
  41. 41.
    Guillard S, Minter RR, Jackson RH (2015) Engineering therapeutic proteins for cell entry: the natural approach. Trends Biotechnol 33(3):163–171. Scholar
  42. 42.
    Gurung P, Lukens JR, Kanneganti T-D (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 21(3):193–201PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hartikainen J, Hassinen I, Hedman A, Kivelä A, Saraste A, Knuuti J et al (2017) Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J 38(33):2547–2555PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hayward C, Banner NR, Morley-Smith A, Lyon AR, Harding SE (2015) The current and future landscape of SERCA gene therapy for heart failure: a clinical perspective. Hum Gene Ther 26(5):293–304. Scholar
  45. 45.
    Htet Hlaing K, Clément M-V (2014) Formation of protein S-nitrosylation by reactive oxygen species. Free Radic Res 48(9):996–1010PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hulot J-S, Ishikawa K, Hajjar RJ (2016) Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J 37(21):1651–1658. Scholar
  47. 47.
    Ichimura K, Matoba T, Nakano K, Tokutome M, Honda K, Koga J-i, Egashira K (2016) A translational study of a new therapeutic approach for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model. PLoS One 11(9):e0162425. Scholar
  48. 48.
    Jiang W, Rutherford D, Vuong T, Liu H (2017) Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater 2(4):185–198. Scholar
  49. 49.
    Jo E-K, Kim JK, Shin D-M, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13(2):148PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Karasawa T, Takahashi M (2017) Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb 24(5):443–451. Scholar
  51. 51.
    Karimi Galougahi K, Liu CC, Garcia A, Gentile C, Fry NA, Hamilton EJ et al (2016) β3 Adrenergic stimulation restores nitric oxide/redox balance and enhances endothelial function in hyperglycemia. J Am Heart Assoc 5(2):e002824PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Katsuki S, Matoba T, Nakashiro S, Sato K, Koga J-i, Nakano K et al (2014) Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 129(8):896–906. Scholar
  53. 53.
    Kraehling JR, Sessa WC (2017) Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res 120(7):1174–1182. Scholar
  54. 54.
    Lamoree B, Hubbard RE (2017) Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem 61(5):453–464. Scholar
  55. 55.
    Leisegang MS, Schröder K, Brandes RP (2017) Redox regulation and noncoding RNAs. Antioxid Redox Signal 29(9):793–812. Scholar
  56. 56.
    Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial Metabolism in Aging Heart. Circ Res 118(10):1593–1611. Scholar
  57. 57.
    Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622. Scholar
  58. 58.
    Liu P, Huang G, Wei T, Gao J, Huang C, Sun M et al (2018) Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta (BBA)-Mol Basis Dis 1864(3):764–777CrossRefGoogle Scholar
  59. 59.
    Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold J et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lönn P, Kacsinta AD, Cui X-S, Hamil AS, Kaulich M, Gogoi K, Dowdy SF (2016) Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep 6:32301. Scholar
  61. 61.
    Lucas T, Dimmeler S (2016) RNA therapeutics for treatment of cardiovascular diseases. Circ Res 119(7):794–797. Scholar
  62. 62.
    Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14(9):623PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Luo S, Lei H, Qin H, Xia Y (2014) Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 20(22):3548–3553PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ma S, Tian XY, Zhang Y, Mu C, Shen H, Bismuth J et al (2016a) E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep 6:22910. Scholar
  65. 65.
    Ma X, Gong N, Zhong L, Sun J, Liang X-J (2016b) Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97:10–21. Scholar
  66. 66.
    Makarewich CA, Olson EN (2017) Mining for micropeptides. Trends Cell Biol 27(9):685–696. Scholar
  67. 67.
    Malinowski JT, St Jean DJ Jr (2018) Next-generation small molecule therapies for heart failure: 2015 and beyond. Bioorg Med Chem Lett 28(9):1429–1435. Scholar
  68. 68.
    Matoba T, Koga J-I, Nakano K, Egashira K, Tsutsui H (2017) Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol 70(3):206–211. Scholar
  69. 69.
    Maxwell JT, Somasuntharam I, Gray WD, Shen M, Singer JM, Wang B et al (2015) Bioactive nanoparticles improve calcium handling in failing cardiac myocytes. Nanomedicine 10(22):3343–3357. Scholar
  70. 70.
    Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM et al (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70–70. Scholar
  71. 71.
    Miragoli M, Ceriotti P, Iafisco M, Vacchiano M, Salvarani N, Alogna A et al (2018) Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 10(424). Scholar
  72. 72.
    Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655. Scholar
  73. 73.
    Morrison C (2015) $1-million price tag set for Glybera gene therapy. Nat Biotechnol 33:217. Scholar
  74. 74.
    Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D et al (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure. results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2(6):641–649. Scholar
  75. 75.
    Murray CW, Rees DC (2016) Opportunity knocks: organic chemistry for Fragment-Based Drug Discovery (FBDD). Angew Chem Int Ed 55(2):488–492. Scholar
  76. 76.
    Myerson JW, Braender B, McPherson O, Glassman PM, Kiseleva RY, Shuvaev VV et al (2018) Flexible nanoparticles reach sterically obscured endothelial targets inaccessible to rigid nanoparticles. Adv Mater 30(32):1802373. Scholar
  77. 77.
    Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF et al (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1151–1210CrossRefGoogle Scholar
  78. 78.
    Nakano K, Matoba T, Koga J-i, Kashihara Y, Fukae M, Ieiri I et al (2018) Safety, tolerability, and pharmacokinetics of NK-104-NP. Int Heart J 59(5):1015–1025PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Nakase I, Noguchi K, Aoki A, Takatani-Nakase T, Fujii I, Futaki S (2017) Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci Rep 7(1):1991. Scholar
  80. 80.
    Nakashiro S, Matoba T, Umezu R, Koga J-I, Tokutome M, Katsuki S et al (2016) Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice. Arterioscler Thromb Vasc Biol 36(3):491–500. Scholar
  81. 81.
    Neves KB, Rios FJ, Mey L, Alves-Lopes R, Cameron AC, Volpe M et al (2018) VEGFR (Vascular Endothelial Growth Factor Receptor) inhibition induces cardiovascular damage via redox-sensitive processes. Hypertension 71(4):638–647. Scholar
  82. 82.
    Nie J-J, Qiao B, Duan S, Xu C, Chen B, Hao W et al (2018) Unlockable nanocomplexes with self-accelerating nucleic acid release for effective staged gene therapy of cardiovascular diseases. Adv Mater 30(31):1801570. Scholar
  83. 83.
    Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, Zhang J (2017) VEGF nanoparticles repair the heart after myocardial infarction. Am J Phys Heart Circ Phys 314(2):H278–H284. Scholar
  84. 84.
    Orogo AM, Gustafsson ÅB (2015) Therapeutic targeting of autophagy. Circ Res 116(3):489–503. Scholar
  85. 85.
    Palacio C, Mooradian AD (2016) Clinical trials and antioxidant outcomes. In: Oxidative stress and antioxidant protection: the science of free radical biology and disease, pp 493–506CrossRefGoogle Scholar
  86. 86.
    Pell VR, Chouchani ET, Frezza C, Murphy MP, Krieg T (2016) Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 111(2):134–141. Scholar
  87. 87.
    Pfaff SJ, Chimenti MS, Kelly MJS, Arkin MR (2015) Biophysical methods for identifying fragment-based inhibitors of protein-protein interactions. In: Meyerkord CL, Fu H (eds) Protein-protein interactions: methods and applications. Springer New York, New York, NY, pp 587–613Google Scholar
  88. 88.
    Qin Q, Mehta H, Yen K, Navarrete G, Brandhorst S, Wan J et al (2018) Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice. Am J Phys Heart Circ Phys 315(5):H1127–H1136. Scholar
  89. 89.
    Ranayhossaini DJ, Rodriguez AI, Sahoo S, Chen BB, Mallampalli RK, Kelley EE et al (2013) Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 288(51):36437–36450. Scholar
  90. 90.
    Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A (2018) Neutrophils: interplay between host defense, cellular metabolism and intracellular infection. Cytokine. Scholar
  91. 91.
    Rappaport J, Papademetriou I, Muro S (2015) Endocytosis and the endolysosomal route in drug delivery. In: Drug delivery across physiological barriersGoogle Scholar
  92. 92.
    Rastogi R, Geng X, Li F, Ding Y (2017) NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci 10(301).
  93. 93.
    Rewatkar PV, Parton RG, Parekh HS, Parat M-O (2015) Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 91:92–108. Scholar
  94. 94.
    Rincon MY, Vanden Driessche T, Chuah MK (2015) Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 108(1):4–20. Scholar
  95. 95.
    Romero CA, Kumar N, Nakagawa P, Worou ME, Liao T-D, Peterson EL, Carretero OA (2018) Renal release of Ac-SDKP is part of an antifibrotic peptidergic system in the kidney. Am J Physiol Renal Physiol 316(1):195–203Google Scholar
  96. 96.
    Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL et al (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71(6):1056–1063. Scholar
  97. 97.
    Rühmann E, Betz M, Heine A, Klebe G (2015) Fragment binding can be either more enthalpy-driven or entropy-driven: crystal structures and residual hydration patterns suggest why. J Med Chem 58(17):6960–6971PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203. Scholar
  99. 99.
    Choi YS, David AE (2014) Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol 15(3):192–199PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sabbah HN (2016) Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther 14(12):1305–1313. Scholar
  101. 101.
    Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K (2016) Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 9(2):e002206–e002206. Scholar
  102. 102.
    Sharma A, Rizky L, Stefanovic N, Tate M, Ritchie RH, Ward KW, de Haan JB (2017) The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc Diabetol 16(1):33PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sharma A, Sellers S, Stefanovic N, Leung C, Tan SM, Huet O et al (2015) Direct endothelial nitric oxide synthase activation provides atheroprotection in diabetes-accelerated atherosclerosis. Diabetes 64(11):3937–50PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sharma UC, Sonkawade SD, Spernyak JA, Sexton S, Nguyen J, Dahal S et al (2018) A small peptide Ac-SDKP inhibits radiation-induced cardiomyopathy. Circ Heart Fail 11(8):e004867. Scholar
  105. 105.
    Shete HK, Prabhu RH, Patravale VB (2014) Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 14(1):460–474PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Shuvaev VV, Brenner JS, Muzykantov VR (2015) Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 219:576–595. Scholar
  107. 107.
    Shuvaev VV, Khoshnejad M, Pulsipher KW, Kiseleva RY, Arguiri E, Cheung-Lau JC et al (2018a) Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 185:348–359. Scholar
  108. 108.
    Shuvaev VV, Kiseleva RY, Arguiri E, Villa CH, Muro S, Christofidou-Solomidou M et al (2018b) Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin. J Control Release 272:1–8. Scholar
  109. 109.
    Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, Park Y (2014) Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 35(8):2436–2445. Scholar
  110. 110.
    Srikanthan K, Shapiro J, Sodhi K (2016) The role of Na/K-ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules 21(9):1172PubMedCentralCrossRefGoogle Scholar
  111. 111.
    Suzuki T (2018) Biomarkers for heart failure, an issue of heart failure clinics. Elsevier-Health ScienceGoogle Scholar
  112. 112.
    Teixeira J, Deus CM, Borges F, Oliveira PJ (2018) Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int J Biochem Cell Biol 97:98–103. Scholar
  113. 113.
    Thummasorn S, Apaijai N, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N (2016) Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc Ther 34(6):404–414. Scholar
  114. 114.
    Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, Jaiwongkam T, Chattipakorn SC, Chattipakorn N (2018) Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity. Mitochondrion 38:31–40. Scholar
  115. 115.
    Treuer AV, Gonzalez DR (2015) Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities. Mol Med Rep 11(3):1555–1565PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Ul Ain Q, Chung H, Chung JY, Choi J-H, Kim Y-H (2017) Amelioration of atherosclerotic inflammation and plaques via endothelial adrenoceptor-targeted eNOS gene delivery using redox-sensitive polymer bearing l-arginine. J Control Release 262:72–86. Scholar
  117. 117.
    Voigt J, Christensen J, Shastri VP (2014) Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci 111(8):2942–2947. Scholar
  118. 118.
    Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949. Scholar
  119. 119.
    Ward JPT (2017) From physiological redox signalling to oxidant stress. Adv Exp Med Biol 967:335–342. Scholar
  120. 120.
    Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412. Scholar
  121. 121.
    Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM (2017) Will nanotechnology bring new hope for gene delivery? Trends Biotechnol 35(5):434–451. Scholar
  122. 122.
    Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen S-A (2016) Native state mass spectrometry, surface plasmon resonance, and X-ray crystallography correlate strongly as a fragment screening combination. J Med Chem 59(5):2192–2204PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Xie L, Talukder MAH, Sun J, Varadharaj S, Zweier JL (2015) Liposomal tetrahydrobiopterin preserves eNOS coupling in the post-ischemic heart conferring in vivo cardioprotection. J Mol Cell Cardiol 86:14–22. Scholar
  124. 124.
    Yamada Y, Harashima H (2018) Targeting the mitochondrial genome through a nanocarrier and the regulation of mitochondrial gene expression. In: Oliveira PJ (ed) Mitochondrial biology and experimental therapeutics. Springer International Publishing, Cham, pp 491–498CrossRefGoogle Scholar
  125. 125.
    Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol (Clifton, NJ) 1266:29–53. Scholar
  126. 126.
    Yang Y, Cheng H-W, Qiu Y, Dupee D, Noonan M, Lin Y-D et al (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117(5):450–459. Scholar
  127. 127.
    Yang Y, Ma Z, Hu W, Wang D, Jiang S, Fan C et al (2016) Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 111(4):45. Scholar
  128. 128.
    Zhang M, Zhao H, Cai J, Li H, Wu Q, Qiao T, Li K (2017) Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS One 12(9):e0185688PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Soloman Saleh
    • 1
    • 2
  • Kristen Bubb
    • 1
  • Gemma A. Figtree
    • 1
    • 3
    Email author
  1. 1.Cardiothoracic and Vascular HealthKolling Institute, University of SydneySt LeonardsAustralia
  2. 2.School of Medical Sciences, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  3. 3.Department of CardiologyRoyal North Shore HospitalSydneyAustralia

Personalised recommendations