Oxidative Stress in Pulmonary Artery Hypertension

  • Vinu Wilson
  • Subir Kumar Maulik


Pulmonary artery hypertension (PAH) is a progressive disorder characterized by pulmonary vascular remodeling ultimately leading to right ventricular failure and death. The last few decades have seen considerable progress in PAH therapy based on drugs targeting three major mechanistic pathways, viz., prostacyclin, endothelin and nitric oxide pathways. A growing body of research has documented that “oxidative stress” is intricately associated with development of PAH. Experimental studies have shown that markers of oxidative tissue damage are present in different genetic and chemical models of PAH. Animal studies have also shown the preventive and therapeutic potential of endogenous antioxidants and/or drugs with antioxidant activity in experimental PAH. Though the evidence implicating oxidative stress in PAH has also been generated in human PAH studies, the clinical trials of antioxidants have not yet yielded encouraging results. Further studies are warranted to unravel the reason(s) underlying this paradox in order to develop potential curative drugs for this morbid disorder.


Pulmonary hypertension Oxidative stress Reactive oxygen species Antioxidants 


  1. 1.
    Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41PubMedCrossRefGoogle Scholar
  2. 2.
    D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349PubMedCrossRefGoogle Scholar
  3. 3.
    Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436PubMedCrossRefGoogle Scholar
  4. 4.
    Menon S (2009) Pulmonary hypertension in the south east Asia region: an analysis of indexed publication profile. PVRI Rev 1:167CrossRefGoogle Scholar
  5. 5.
    Humbert M, Morrell NW, Archer SL et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24SPubMedCrossRefGoogle Scholar
  6. 6.
    Badlam JB, Bull TM (2017) Steps forward in the treatment of pulmonary arterial hypertension: latest developments and clinical opportunities. Ther Adv Chronic Dis 8:47–64PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Christman BW, McPherson CD, Newman JH et al (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327:70–75PubMedCrossRefGoogle Scholar
  8. 8.
    Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351:1655–1665PubMedCrossRefGoogle Scholar
  9. 9.
    Bruderer S, Hurst N, Remenova T, Dingemanse J (2017) Clinical pharmacology, efficacy, and safety of selexipag for the treatment of pulmonary arterial hypertension. Expert Opin Drug Saf 16:743–751PubMedCrossRefGoogle Scholar
  10. 10.
    Sidharta PN, Treiber A, Dingemanse J (2015) Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet 54:457–471PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ghofrani H-A, Galiè N, Grimminger F et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340PubMedCrossRefGoogle Scholar
  12. 12.
    Wong C-M, Bansal G, Pavlickova L et al (2013) Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxid Redox Signal 18:1789–1796PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pagel J-I, Deindl E (2012) Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int J Mol Sci 13:13104–13117PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wolin MS, Ahmad M, Gupte SA (2005) The sources of oxidative stress in the vessel wall. Kidney Int 67:1659–1661PubMedCrossRefGoogle Scholar
  15. 15.
    Mohazzab KM, Wolin MS (1994) Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol 267:L815–L822PubMedGoogle Scholar
  16. 16.
    Terada LS, Guidot DM, Leff JA et al (1992) Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc Natl Acad Sci USA 89:3362–3366PubMedCrossRefGoogle Scholar
  17. 17.
    Grobe AC, Wells SM, Benavidez E et al (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 290:L1069–L1077PubMedCrossRefGoogle Scholar
  18. 18.
    Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478PubMedCrossRefGoogle Scholar
  19. 19.
    McNally JS, Davis ME, Giddens DP et al (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297PubMedCrossRefGoogle Scholar
  20. 20.
    Mittal M, Roth M, König P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267PubMedCrossRefGoogle Scholar
  21. 21.
    Li S, Tabar SS, Malec V et al (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10:1687–1698PubMedCrossRefGoogle Scholar
  22. 22.
    Csiszar A, Labinskyy N, Olson S et al (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54:668–675PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang X, Yang Y, Yang D et al (2016) Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J Vasc Surg 64:1468–1477PubMedCrossRefGoogle Scholar
  24. 24.
    Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260:21–29PubMedCrossRefGoogle Scholar
  25. 25.
    Nisbet RE, Graves AS, Kleinhenz DJ et al (2009) The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40:601–609PubMedCrossRefGoogle Scholar
  26. 26.
    Araneda OF, Tuesta M (2012) Lung oxidative damage by hypoxia. Oxid Med Cell Longev 2012:856918PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhao Y-Y, Zhao YD, Mirza MK et al (2009) Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 119:2009–2018PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Konduri GG, Bakhutashvili I, Eis A, Pritchard K (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292:H1812–H1820PubMedCrossRefGoogle Scholar
  29. 29.
    Liu JQ, Zelko IN, Erbynn EM et al (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2–L10PubMedCrossRefGoogle Scholar
  30. 30.
    Maniatis NA, Shinin V, Schraufnagel DE et al (2008) Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1-/- mice. Am J Physiol Lung Cell Mol Physiol 294:L865–L873PubMedCrossRefGoogle Scholar
  31. 31.
    Kamezaki F, Tasaki H, Yamashita K et al (2008) Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 177:219–226PubMedCrossRefGoogle Scholar
  32. 32.
    Farrow KN, Lakshminrusimha S, Reda WJ et al (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L979–L987PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Galhotra P, Prabhakar P, Meghwani H et al (2018) Beneficial effects of fenofibrate in pulmonary hypertension in rats. Mol Cell Biochem. Scholar
  34. 34.
    Meghwani H, Prabhakar P, Mohammed SA et al (2018) Beneficial effect of ocimum sanctum (Linn) against monocrotaline-induced pulmonary hypertension in rats. Med Basel Switz 5. Scholar
  35. 35.
    Meghwani H, Prabhakar P, Mohammed SA et al (2017) Beneficial effects of aqueous extract of stem bark of Terminalia arjuna (Roxb.), An ayurvedic drug in experimental pulmonary hypertension. J Ethnopharmacol 197:184–194PubMedCrossRefGoogle Scholar
  36. 36.
    Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294:L233–L245PubMedCrossRefGoogle Scholar
  37. 37.
    Wong C-M, Preston IR, Hill NS, Suzuki YJ (2012) Iron chelation inhibits the development of pulmonary vascular remodeling. Free Radic Biol Med 53:1738–1747PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ghasemzadeh N, Patel RS, Eapen DJ et al (2014) Oxidative stress is associated with increased pulmonary artery systolic pressure in humans. Hypertens Dallas Tex 63:1270–1275CrossRefGoogle Scholar
  39. 39.
    Cracowski J-L, Degano B, Chabot F et al (2012) Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension. Chest 142:869–876PubMedCrossRefGoogle Scholar
  40. 40.
    Spiekermann S, Schenk K, Hoeper MM (2009) Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension. Eur Respir J 34:276PubMedCrossRefGoogle Scholar
  41. 41.
    Masri FA, Comhair SAA, Dostanic-Larson I et al (2008) Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 1:99–106PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769PubMedCrossRefGoogle Scholar
  43. 43.
    Dani C, Poggi C (2014) The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 21:1863–1880PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Peña-Silva RA, Miller JD, Chu Y, Heistad DD (2009) Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am J Physiol Heart Circ Physiol 297:H1354–H1360PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Semen K, Yelisyeyeva O, Jarocka-Karpowicz I et al (2015) Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: Evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability. Redox Biol 7:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fan Y-F, Zhang R, Jiang X et al (2013) The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res 99:395–403PubMedCrossRefGoogle Scholar
  47. 47.
    Gabrielli LA, Castro PF, Godoy I et al (2011) Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. J Card Fail 17:1012–1017PubMedCrossRefGoogle Scholar
  48. 48.
    Sharp J, Farha S, Park MM et al (2014) Coenzyme Q supplementation in pulmonary arterial hypertension. Redox Biol 2:884–891PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zeng W-J, Xiong C-M, Zhao L et al (2012) Atorvastatin in Pulmonary Arterial Hypertension (APATH) study. Eur Respir J 40:67–74PubMedCrossRefGoogle Scholar
  50. 50.
    Kawut SM, Bagiella E, Lederer DJ et al (2011) Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension. Circulation 123:2985–2993PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rysz-Górzynska M, Gluba-Brzózka A, Sahebkar A et al (2016) Efficacy of statin therapy in pulmonary arterial hypertension: a systematic review and meta-analysis. Sci Rep 6:30060PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rai PR, Cool CD, King JAC et al (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xu W, Koeck T, Lara AR et al (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 104:1342–1347PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vinu Wilson
    • 1
  • Subir Kumar Maulik
    • 2
  1. 1.Department of PharmacologyGovt. T. D. Medical College, AlappuzhaAlappuzhaIndia
  2. 2.Department of PharmacologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations