Nitrosative Stress and Cardiogenesis: Cardiac Remodelling Perturbs Embryonic Metabolome

  • Pavitra Kumar
  • Lakshmikirupa Sundaresan
  • Suvro Chatterjee


Nitrosative stress because of hyperactive redox milieu is thought to be associated with decrease in bioavailability of nitric oxide and the subsequent defective cardiogenesis. The role of nitrosative stress in pathophysiology of the heart in adults has been studied for several decades; however, very few studies link the structural deformities in the heart with nitrosative stress. In this article, we give a detailed discussion of evidence of the impact of nitrosative stress during cardiogenesis and also the effect of following cardiac remodelling on the metabolism of the embryo. We highlight specifically the reactive nitrogen species (RNS)-mediated structural changes in the cardiac looping and predicted its consequences on embryonic metabolism using transcriptome analysis. In the present study, we used thalidomide as RNS inducer, which increases peroxynitrite and superoxide levels in the developing heart. The transcriptome analysis of thalidomide-treated embryos showed that the treatment affected severely the protein and fatty acid metabolism that consequently might lead to thalidomide-mediated heart defects in the embryo. To summarize, our data suggest that fatty acid metabolism, which is a critical metabolic pathway during heart development, is perturbed under an oxidative and nitrosative environment due to thalidomide treatment.


Nitrosative stress Congenital heart diseases Cardiogenesis Thalidomide Transcriptome Metabolome 



This work was supported by a grant from University Grant Commission Faculty Recharge Programme (UGC-FRP) Government of India to SC. PK is thankful for the financial support from University Grant Commission-Senior Research Fellowship programme (UGC-SRF), Government of India. LS received financial support from the Department of Biotechnology-Senior Research Fellowship (DBT-SRF) programme, Government of India.


  1. 1.
    Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 122(22):2254–2263PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Pei L, Kang Y, Zhao Y, Yan H (2017) Prevalence and risk factors of congenital heart defects among live births: a population-based cross-sectional survey in Shaanxi province, Northwestern China. BMC Pediatr 17(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Leirgul E et al (2014) Birth prevalence of congenital heart defects in Norway 1994-2009—a nationwide study. Am Heart J 168(6):956–964PubMedCrossRefGoogle Scholar
  4. 4.
    Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M (2009) National time trends in congenital heart defects, Denmark, 1977–2005. Am Heart J 157(3):467–473.e1PubMedCrossRefGoogle Scholar
  5. 5.
    Nisale SH, Maske VG (2016) A study of prevalence and pattern of congenital heart disease and rheumatic heart disease among school children. Int J Adv Med 3(4):947–951Google Scholar
  6. 6.
    Bhardwaj R et al (2015) Epidemiology of congenital heart disease in India. Congenit Heart Dis 10(5):437–446PubMedCrossRefGoogle Scholar
  7. 7.
    Nabulsi MM, Tamim H, Sabbagh M, Obeid MY, Yunis KA, Bitar FF (2003) Parental consanguinity and congenital heart malformations in a developing country. Am J Med Genet 116A(4):342–347PubMedCrossRefGoogle Scholar
  8. 8.
    Tanner K, Sabrine N, Wren C (2005) Cardiovascular malformations among preterm infants. Pediatrics 116(6):e833–e838PubMedCrossRefGoogle Scholar
  9. 9.
    Haney AF, Misukonist MA, Weinberg JB (1983) Macrophages and infertility: oviductal macrophages as potential mediators of infertility. Fertil Steril 39(3):310–315PubMedCrossRefGoogle Scholar
  10. 10.
    Barroso YC, RP OC, Nagamani M (1998) Nitric oxide inhibits development of embryos and implantation in mice. – PubMed – NCBI. Mol Hum Reprod 5(4):503–507CrossRefGoogle Scholar
  11. 11.
    Liu Y et al (2014) Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction. Eur Heart J 35(14):920–931PubMedCrossRefGoogle Scholar
  12. 12.
    Valenti O et al (2011) Fetal cardiac function during the first trimester of pregnancy. J Prenat Med 5(3):59–62PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lawson A, Schoenwolf GC (2003) Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130(15):3491–3501PubMedCrossRefGoogle Scholar
  14. 14.
    Rajala K, Pekkanen-Mattila M, Aalto-Setälä K (2011) Cardiac differentiation of pluripotent stem cells. Stem Cells Int 2011:383709PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258(1):1–19PubMedCrossRefGoogle Scholar
  16. 16.
    Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313(5795):1922–1927PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kane C, Terracciano CMN (2017) Concise review: criteria for chamber-specific categorization of human cardiac Myocytes derived from pluripotent stem cells. Stem Cell 35(8):1881–1897CrossRefGoogle Scholar
  18. 18.
    Schleich J-M, Abdulla T, Summers R, Houyel L (2013) An overview of cardiac morphogenesis. Arch Cardiovasc Dis 106(11):612–623PubMedCrossRefGoogle Scholar
  19. 19.
    Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45PubMedCrossRefGoogle Scholar
  20. 20.
    Christoffels VM et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223(2):266–278PubMedCrossRefGoogle Scholar
  21. 21.
    Moorman A, Webb S, Brown NA, Lamers W, Anderson RH (2003) Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lin C-J, Lin C-Y, Chen C-H, Zhou B, Chang C-P (2012) Partitioning the heart: mechanisms of cardiac septation and valve development. Development 139(18):3277–3299PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Poelmann RE et al (2014) Evolution and development of ventricular Septation in the Amniote heart. PLoS One 9(9):e106569PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Anderson RH, Webb S, Brown NA, Lamers W, Moorman A (2003) Development of the heart: (2) Septation of the atriums and ventricles. Heart 89(8):949–958PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dakkak W, Bhimji SS (2018) Ventricular Septal Defect. StatPearls Publishing, Treasure IslandGoogle Scholar
  26. 26.
    Bailliard F, Anderson RH (2009) Tetralogy of Fallot. Orphanet J Rare Dis 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Stennard FA, Harvey RP, Smoak I, Yamamura K, Meyers EN (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132(22):4897–4910PubMedCrossRefGoogle Scholar
  28. 28.
    Khalil A et al (2017) A HAND to TBX5 explains the link between thalidomide and cardiac diseases. Sci Rep 7(1):1416PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Takeuchi JK et al (2003) Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130(24):5953–5964PubMedCrossRefGoogle Scholar
  30. 30.
    Nadeau M et al (2010) An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation. Proc Natl Acad Sci U S A 107(45):19356–19361PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zeisberg EM et al (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115(6):1522–1531PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ridnour LA et al (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385(1):1–10PubMedCrossRefGoogle Scholar
  33. 33.
    Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329–354PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Uribe P, Boguen R, Treulen F, Sánchez R, Villegas JV (2015) Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. MHR Basic Sci Reprod Med 21(3):237–243CrossRefGoogle Scholar
  35. 35.
    Iovine NM, Pursnani S, Voldman A, Wasserman G, Blaser MJ, Weinrauch Y (2008) Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect Immun 76(3):986–993PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM (2013) Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol 169(7):1417–1429PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 837a–837dPubMedCrossRefGoogle Scholar
  38. 38.
    Wink DA et al (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Physiol 271(5):C1424–C1437CrossRefGoogle Scholar
  40. 40.
    Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288(37):26464–26472PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gaikwad KB, Joshi NG, Selkar SP (2017) Study of Nitrosative stress in ‘Pregnancy Induced Hypertension. J Clin Diagn Res 11(3):BC06–BC08PubMedPubMedCentralGoogle Scholar
  42. 42.
    Saenen ND et al (2016) Placental Nitrosative stress and exposure to ambient air pollution during gestation: a population study. Am J Epidemiol 184(6):442–449PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao Z, Reece EA (2013) New concepts in diabetic embryopathy. Clin Lab Med 33(2):207–233PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cao L, Tan C, Meng F, Liu P, Reece EA, Zhao Z (2016) Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Sci Rep 6:21491PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhao Z (2016) Reevaluation of Antioxidative strategies for birth defect prevention in diabetic pregnancies. J Biomol Res Ther 5(3):1–5CrossRefGoogle Scholar
  46. 46.
    Kumar P et al (2018) Thalidomide remodels developing heart in chick embryo: discovery of a thalidomide mediated hematoma in heart muscle. Naunyn Schmiedeberg’s Arch Pharmacol 391(10):1093–1105CrossRefGoogle Scholar
  47. 47.
    Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó E, Szabó C (2002) The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51(2):514–521PubMedCrossRefGoogle Scholar
  48. 48.
    Pacher P, Szabó C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25(3):235–260PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Knobloch J, Rüther U (2008) Shedding light on an old mystery: thalidomide suppresses survival pathways to induce limb defects. Cell Cycle 7(9):1121–1127PubMedCrossRefGoogle Scholar
  50. 50.
    Mujagić H, Chabner BA, Mujagić Z (2002) Mechanisms of action and potential therapeutic uses of thalidomide. Croat Med J 43(3):274–285PubMedGoogle Scholar
  51. 51.
    Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195(4):231–272PubMedCrossRefGoogle Scholar
  52. 52.
    Kumar P et al (2016) Harvesting clues from genome wide transcriptome analysis for exploring thalidomide mediated anomalies in eye development of chick embryo: nitric oxide rectifies the thalidomide mediated anomalies by swinging back the system to normal transcriptome pattern. Biochimie 121:253–267PubMedCrossRefGoogle Scholar
  53. 53.
    Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174(2):332–341PubMedCrossRefGoogle Scholar
  54. 54.
    Veeriah V et al (2017) Transcriptomic analysis of thalidomide challenged Chick embryo suggests possible link between impaired vasculogenesis and defective organogenesis. Chem Res Toxicol 30(10):1883–1896PubMedCrossRefGoogle Scholar
  55. 55.
    Chen EY et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14(1):128PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kuleshov MV et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Majumder S et al (2009) Thalidomide attenuates nitric oxide-driven angiogenesis by interacting with soluble guanylyl cyclase. Br J Pharmacol 158(7):1720–1734PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71CrossRefGoogle Scholar
  59. 59.
    Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049Google Scholar
  60. 60.
    Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bloch W et al (1999) Nitric oxide synthase expression and role during cardiomyogenesis. Cardiovasc Res 43(3):675–684PubMedCrossRefGoogle Scholar
  62. 62.
    Mihu D, Sabău L, Costin N, Ciortea R, Măluţan A, Mihu CM (2012) Implications of maternal systemic oxidative stress in normal pregnancy and in pregnancy complicated by preeclampsia. J Matern Neonatal Med 25(7):944–951CrossRefGoogle Scholar
  63. 63.
    Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J (May 2017) Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology. Antioxid Redox Signal 26(13):679–699PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15(6):1517–1530PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhao J (2007) Interplay among nitric oxide and reactive oxygen species: a complex network determining cell survival or death. Plant Signal Behav 2(6):544–547PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Uribe P, Treulen F, Boguen R, Sánchez R, Villegas JV (2017) Nitrosative stress by peroxynitrite impairs ATP production in human spermatozoa. Andrologia 49(3):e12615CrossRefGoogle Scholar
  67. 67.
    Morris G, Walder K, Puri BK, Berk M, Maes M (2016) The deleterious effects of oxidative and nitrosative stress on Palmitoylation, membrane lipid rafts and lipid-based cellular signalling: new drug targets in neuroimmune disorders. Mol Neurobiol 53(7):4638–4658PubMedCrossRefGoogle Scholar
  68. 68.
    Ursini MV, Parrella A, Rosa G, Salzano S, Martini G (1997) Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem J 323(Pt 3):801–806PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Doulias P-T, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-Nitrosylation. Sci Signal 6(256):rs1–rs1PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bruegger JJ, Smith BC, Wynia-Smith SL, Marletta MA (2018) Comparative and integrative metabolomics reveal that S -nitrosation inhibits physiologically relevant metabolic enzymes. J Biol Chem 293(17):6282–6296PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Iruretagoyena JI et al (2014) Metabolic gene profile in early human fetal heart development. MHR Basic Sci Reprod Med 20(7):690–700CrossRefGoogle Scholar
  72. 72.
    Siamwala J, Kumar P, Veeriah V, Muley A, Rajendran S, Konikkat S, Majumder S, Mani K, Chatterjee S (2019) Nitric oxide reverses the position of the heart during embryonic development. Int J Mol Sci 20(5):1157PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pavitra Kumar
    • 1
  • Lakshmikirupa Sundaresan
    • 1
    • 2
  • Suvro Chatterjee
    • 1
    • 2
  1. 1.AU-KBC Research CentreAnna UniversityChennaiIndia
  2. 2.Department of BiotechnologyAnna UniversityChennaiIndia

Personalised recommendations