Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins

  • Zakaria A. AlmsherqiEmail author
  • Bernita Yeo Hui Li
  • Yuling Zhou
  • Craig S. McLachlan


According to “free-radical theory” of disease, Reactive Oxygen Species (ROS) play a key role in the pathogenesis of several diseases including cardiovascular disease. When the balance between production of free radicals and antioxidant capacity of the cardiac cells is altered due to pathophysiological conditions, oxidative stress is induced. Oxidative stress has been linked to the development of ischemic heart disease, atherosclerosis, congestive heart failure, ischemic-reperfusion injury, and vascular endothelial dysfunction. In this context, antioxidant supplementation would have a positive effect on cardiovascular diseases. However, several clinical trials over the past decades employed different strategies of antioxidant therapies which have failed to achieve favorable results in ameliorating or preventing cardiovascular diseases. Much less attention has been paid to the modulation of ROS production, despite the fact that prevention, rather than cure, would appear to be a logic approach to attenuate the oxidative damage. This chapter intends to highlight the mechanisms of oxidative stress modulation – by Natural or induced mitochondrial uncoupling respiration – in regulating ROS production and its significance in cardiovascular pathophysiological conditions.


Oxidative Stress Uncoupling Proteins Cardiovascular Diseases Myocardial Infarction Myocarditis SREBP PPARs AMPK Myocardial Hypertrophy Heart Failure Reperfusion 



The authors would like to thank Miss Teresa Cheng for her artwork presented in Figs. 1.1 and 1.2.


  1. 1.
    Mootha VK, Arai AE, Balaban RS (1997) Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Phys Heart Circ Phys 272(2):H769–H775Google Scholar
  2. 2.
    Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2(2):85–93PubMedCrossRefGoogle Scholar
  3. 3.
    NICHOLLS DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem 50(1):305–315PubMedCrossRefGoogle Scholar
  4. 4.
    Rolfe DF et al (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Phys Cell Phys 276(3):C692–C699CrossRefGoogle Scholar
  5. 5.
    MacLellan JD et al (2005) Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes 54(8):2343–2350PubMedCrossRefGoogle Scholar
  6. 6.
    Miller D, MacFarlane N (1995) Intracellular effects of free radicals and reactive oxygen species in cardiac muscle. J Hum Hypertens 9(6):465–473PubMedGoogle Scholar
  7. 7.
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys 279(6):L1005–L1028Google Scholar
  8. 8.
    Cannon B, Hedin A, Nedergaard J (1982) Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett 150(1):129–132PubMedCrossRefGoogle Scholar
  9. 9.
    Akhmedov AT, Rybin V, Marín-García J (2015) Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 20(2):227–249PubMedCrossRefGoogle Scholar
  10. 10.
    Schrauwen P (2004) The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? Proc Nutr Soc 63(2):287–292PubMedCrossRefGoogle Scholar
  11. 11.
    Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125(9):2115–2125PubMedCrossRefGoogle Scholar
  12. 12.
    Putman CT et al (2003) AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 551(1):169–178PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Xie Z et al (2008) Up-regulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 57:3222PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    DIRAISON F et al (2004) Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J 378(3):769–778PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kozak UC et al (1994) An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol 14(1):59–67PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Reddy JK, Krishnakantha T (1975) Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science 190(4216):787–789PubMedCrossRefGoogle Scholar
  17. 17.
    Lehmann JM et al (1997) Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272(6):3406–3410PubMedCrossRefGoogle Scholar
  18. 18.
    YOUNG ME et al (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor α in the adult rodent heart. FASEB J 15(3):833–845PubMedCrossRefGoogle Scholar
  19. 19.
    Gilde AJ et al (2003) Peroxisome proliferator-activated receptor (PPAR) α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92(5):518–524PubMedCrossRefGoogle Scholar
  20. 20.
    Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10(6):238–245PubMedCrossRefGoogle Scholar
  21. 21.
    Murray AJ et al (2004) Uncoupling proteins in human heart. Lancet 364(9447):1786–1788PubMedCrossRefGoogle Scholar
  22. 22.
    Williamson J, Krebs H (1961) Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 80(3):540PubMedPubMedCentralGoogle Scholar
  23. 23.
    Murray AJ et al (2005) Plasma free fatty acids and peroxisome proliferator–activated receptor α in the control of myocardial uncoupling protein levels. Diabetes 54(12):3496–3502PubMedCrossRefGoogle Scholar
  24. 24.
    Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Busquets Sl et al (1998) In the rat, tumor necrosis factor α administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis? FEBS Lett 440(3):348–350PubMedCrossRefGoogle Scholar
  26. 26.
    Lee FJ et al (1999) Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating rat liver. Hepatology 29(3):677–687PubMedCrossRefGoogle Scholar
  27. 27.
    Kwon HJ et al (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138(10):807–811PubMedCrossRefGoogle Scholar
  28. 28.
    Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chang M-C et al (2017) Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms. Oncotarget 8(63):106177PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lee K-U et al (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 96(11):1200–1207PubMedCrossRefGoogle Scholar
  31. 31.
    Alves-Guerra JBMM et al. Protective Role of Uncoupling Protein 2 in AtherosclerosisGoogle Scholar
  32. 32.
    Braganza D, Bennett M (2001) New insights into atherosclerotic plaque rupture. Postgrad Med J 77(904):94–98PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jennings RB, Ganote CE (1974) Structural changes in myocardium during acute ischemia. Circ Res 35(3_supplement):III-156–III-172Google Scholar
  34. 34.
    Rechavia E et al (1995) Hyperdynamic performance of remote myocardium in acute infarction: Correlation between regional contractile function and myocardial perfusion. Europ Heart J 16(12):1845–1850CrossRefGoogle Scholar
  35. 35.
    Almsherqi ZA et al (2006) Reduced cardiac output is associated with decreased mitochondrial efficiency in the non-ischemic ventricular wall of the acute myocardial-infarcted dog. Cell Res 16(3):297PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Murray AJ et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44(4):694–700PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gottlieb RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Almsherqi ZA et al (2006) Displacement of the beating heart induces an immediate and sustained increase in myocardial reactive oxygen species. Circ J 70(9):1226–1228PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu Y et al (2009) Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 9(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bienengraeber M, Ozcan C, Terzic A (2003) Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35(7):861–865PubMedCrossRefGoogle Scholar
  42. 42.
    Organisation WH (2017) The top 10 causes of deathGoogle Scholar
  43. 43.
    Misaka T et al (2018) FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol 114:93–104PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cappetta D et al (2017) Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 174(21):3696–3712PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bugger H et al (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67(6):1381–1388PubMedCrossRefGoogle Scholar
  46. 46.
    Jiménez-Jiménez J et al (2006) Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757(9–10):1292–1296CrossRefGoogle Scholar
  47. 47.
    Teshima Y et al (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93(3):192–200PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Perrino C et al (2013) Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2(3):e000086PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gaussin V et al (2003) Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation 108(23):2926–2933PubMedCrossRefGoogle Scholar
  50. 50.
    Hang T et al (2007) Apoptosis and expression of uncoupling protein-2 in pressure overload-induced left ventricular hypertrophy. Acta Cardiol 62(5):461–465PubMedCrossRefGoogle Scholar
  51. 51.
    Ji X-B et al (2015) Inhibition of uncoupling protein 2 attenuates cardiac hypertrophy induced by transverse aortic constriction in mice. Cell Physiol Biochem 36(5):1688–1698PubMedCrossRefGoogle Scholar
  52. 52.
    Murakami K et al (2002) Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 40(3):251–255PubMedCrossRefGoogle Scholar
  53. 53.
    Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72(2):210–219PubMedCrossRefGoogle Scholar
  54. 54.
    Hesselink MK, Schrauwen P (2005) Uncoupling proteins in the failing human heart: friend or foe? Lancet 365(9457):385–386PubMedCrossRefGoogle Scholar
  55. 55.
    Russell RR et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114(4):495–503PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pierelli G et al (2017) Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev 2017:1CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zakaria A. Almsherqi
    • 1
    • 2
    Email author
  • Bernita Yeo Hui Li
    • 3
  • Yuling Zhou
    • 1
  • Craig S. McLachlan
    • 1
  1. 1.Rural Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  2. 2.Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  3. 3.School of MedicineFlinders UniversityAdelaideAustralia

Personalised recommendations