Advertisement

Perception of Stress Environment in Plants

  • Charanpreet Kaur
  • Ashwani Pareek
  • Sneh Lata Singla-PareekEmail author
Chapter

Abstract

Any unfavourable condition or constituent that upsets or blocks a plant’s metabolism, growth, or development can be termed as stress. As plants lack the ability to escape from these adverse situations, they have evolved elaborate mechanisms to perceive and respond to them. Stress signaling has, therefore, taken a central role in growth and development of plants as they have to endure such situations more frequently during their life cycle. Perception of stress is a critical component of stress signaling which governs the ultimate fate of plant survival. Plasma membrane serves as the primary site for sensing various environmental stimuli through membrane receptors and transduces them via second messengers to downstream intra- and intercellular signaling networks. Further, phytohormones which are considered as plant growth regulators also play vital roles in stress adaptation. Plants have evolved intricate hormone signaling networks which can crosstalk with other stress mechanisms making them ideal candidates for mediating defence responses. Here, we have presented an overview of stress, its perception and transduction in plants, also highlighting important points of interactions between various stress signaling mechanisms. We propose that stress signaling is a highly complex phenomenon where much is still needed to be deciphered to unlock the secret of robust plant defence responses.

Keywords

Abiotic stress Biotic stress Calcium Crosstalk in signaling Flooding Pathogen perception Reactive oxygen species (ROS) Salt sensing Temperature sensing Water sensing 

Notes

Acknowledgements

Charanpreet Kaur acknowledges the DST-INSPIRE Faculty Award (IFA-14/LSPA-24) received from the Department of Science and Technology (DST), Government of India. SLS-P and AP acknowledge the grant received from NWO Indo-Netherlands project.

References

  1. Ahmad A, Diwan H, Abrol YP (2009) Global climate change, stress and plant productivity. In: Pareek A, Sopory S, Bohnert H (eds) Abiotic stress adaptation in plants. Springer, Dordrecht, pp 503–521CrossRefGoogle Scholar
  2. Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342PubMedCrossRefGoogle Scholar
  3. Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38PubMedGoogle Scholar
  4. Bui LT, Giuntoli B, Kosmacz M, Parlanti S, Licausi F (2015) Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci 236:37–43PubMedCrossRefGoogle Scholar
  5. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3. doi: 10.7554/eLife.03766Google Scholar
  6. Cesari S (2018) Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219:17–24PubMedCrossRefGoogle Scholar
  7. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500PubMedCrossRefGoogle Scholar
  8. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867PubMedCrossRefGoogle Scholar
  9. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537CrossRefGoogle Scholar
  10. Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479PubMedCrossRefGoogle Scholar
  11. Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404CrossRefGoogle Scholar
  13. Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60:745 60: 745–745 60: 756PubMedGoogle Scholar
  14. Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2018) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ 41:1186–1200PubMedCrossRefGoogle Scholar
  15. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:103–115CrossRefGoogle Scholar
  17. Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y (2012) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619PubMedCrossRefGoogle Scholar
  18. Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jeon J, Kim NY, Kim S, Kang NY, Nova’k O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286PubMedCrossRefGoogle Scholar
  21. Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schafer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889PubMedCrossRefGoogle Scholar
  22. Kaur C, Kushwaha HR, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL (2015) Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Front Plant Sci 6:682PubMedPubMedCentralGoogle Scholar
  23. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  24. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267PubMedCrossRefGoogle Scholar
  25. Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K (2018) Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181–186PubMedCrossRefGoogle Scholar
  26. Larcher W (1987) Streß bei Pflanzen Naturwissenschaften 74:158–167CrossRefGoogle Scholar
  27. Lee KW, Chen PW, Lu CA, Chen S, Ho TH, Yu SM (2009) Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2:ra61PubMedGoogle Scholar
  28. Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LA, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190:457–471PubMedCrossRefGoogle Scholar
  29. Lichtenthaler HK (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer Academic, Dordrecht, pp 129–142Google Scholar
  30. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14CrossRefGoogle Scholar
  31. Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Sugar modulation of α-amylase genes under anoxia. Ann Bot 91:143–148PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221PubMedCrossRefGoogle Scholar
  33. Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis thaliana roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625PubMedPubMedCentralCrossRefGoogle Scholar
  34. Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196PubMedCrossRefGoogle Scholar
  35. Martin M, Albanesi D, Alzari PM, de Mendoza D (2009) Functional in vitro assembly of the integral membrane bacterial thermosensor DesK. Protein Expr Purif 66:39–45PubMedCrossRefGoogle Scholar
  36. Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM, Bressan RA, Hasegawa PM (2002) An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277:33075–33080PubMedCrossRefGoogle Scholar
  37. Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  38. Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A 90:6208–6212PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125CrossRefGoogle Scholar
  40. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  41. Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:21–23CrossRefGoogle Scholar
  43. Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole genome analysis of Oryza sativa L. reveals similar architecture of two-component-signaling machinery with Arabidopsis. Plant Physiol 142:380–397PubMedPubMedCentralCrossRefGoogle Scholar
  44. Redondo-Gómez S (2013) Abiotic and biotic stress tolerance in plants. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi, pp 1–20Google Scholar
  45. Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefPubMedCentralGoogle Scholar
  46. Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sajid M, Rashid B, Ali Q (2018) Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol Plant 62:409CrossRefGoogle Scholar
  48. Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12PubMedCrossRefGoogle Scholar
  49. Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ (2018) Signal dynamics and interactions during flooding stress. Plant Physiol 176:1106–1117PubMedCrossRefGoogle Scholar
  50. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32CrossRefGoogle Scholar
  51. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187PubMedPubMedCentralCrossRefGoogle Scholar
  52. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  53. Singh AK, Ansari MW, Pareek A, Singla-Pareek SL (2008) Raising salinity tolerant rice: recent progress and future perspectives. Physiol Mol Biol Plants 14:137–154PubMedPubMedCentralCrossRefGoogle Scholar
  54. Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020PubMedCrossRefGoogle Scholar
  56. Upreti KK, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. In: Srinivasa Rao NK, Shivashankara KS Laxman RH (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp 19–46CrossRefGoogle Scholar
  57. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  58. Vashisht D, Hesselink A, Pierik R, Ammerlaan JM, Bailey-Serres J, Visser EJ, Pedersen O, Van Zanten M, Vreugdenhil D, Jamar DC, Voesenek LA (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310PubMedCrossRefGoogle Scholar
  59. Ve’zina LP, Ferullo JM, Laliberté G, Laberge S, Willemot C (1997) Chilling and freezing. In: MNV P (ed) Plant ecophysiology. Wiley, New York, pp 61–100Google Scholar
  60. Voesenek LACJ, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16:647–653PubMedCrossRefGoogle Scholar
  61. Voesenek LACJ, Pierik R, Sasidharan R (2015) Plant life without ethylene. Trends Plant Sci 20:1–3CrossRefGoogle Scholar
  62. Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746PubMedCrossRefGoogle Scholar
  63. Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant Thermosensors. Trends Plant Sci 24:210–219PubMedCrossRefGoogle Scholar
  64. Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117PubMedPubMedCentralCrossRefGoogle Scholar
  65. Wu CH, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science 360:1300–1301PubMedCrossRefGoogle Scholar
  66. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  67. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A 102:16107–16112PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242PubMedCrossRefGoogle Scholar
  69. Yeung E, van Veen H, Vashisht D, Paiva AL, Hummel M, Rankenberg T, Steffens B, Steffen-Heins A, Sauter M, de Vries M, Schuurink RC (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 115:E6085–E6094PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Charanpreet Kaur
    • 1
  • Ashwani Pareek
    • 1
  • Sneh Lata Singla-Pareek
    • 2
    Email author
  1. 1.Stress Physiology and Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Plant Stress BiologyInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations