Advertisement

Nutrient Perception and Signaling in Plants

  • Dinesh Kumar Jaiswal
  • Nandula RaghuramEmail author
Chapter

Abstract

Plants have developed mechanisms to sense the fluctuating availability of nutrients, water, carbon dioxide, oxygen, etc. for their adaptation and survival under constantly changing atmospheric and soil conditions. The biological interventions for crop improvement for nutrient use efficiency have long been limited by the lack of adequate understanding of the sensing and signaling of nutrients and the targets for their improvement. Moreover, nutrient fluctuations could contribute to or accentuate the effects of other abiotic stresses such as drought, flood, salt, extreme light, heat, cold, and wind velocity or biotic stresses due to pests and pathogens. The global warming due to increased atmospheric CO2 emissions also affects drought, salt stress, and nutrient status in plants. This chapter highlights several developments in the last two decades that have improved our understanding of the molecular physiology of nutrient sensing, signaling pathways, and their crosstalk, revealing the nature of plant responses toward its survival. We deal with sensing at the levels of roots for a few nutrients and sensing at the level of shoots for oxygen and carbon dioxide and how a balance of all these factors ensures growth and development. The sensing of water and stress environment is covered separately in two chapters.

Keywords

Carbon dioxide Nitrogen Nutrients Oxygen Phosphorus Potassium Sensing Signaling 

Notes

Acknowledgments

The work in NR lab was supported by research grants [GGSIPU/DRC/PhD/Adm/2016/1549] and [38(1246)/10/EMRII] from GGS Indraprastha University and Council of Scientific and Industrial Research (CSIR), respectively. DKJ was supported by a fellowship from the Indo-UK Virtual Nitrogen Centre on Nitrogen Efficiency of Whole-cropping Systems (NEWS) BT/IN/UK-VNC/44/NR/2015-16.

References

  1. Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arcondeguy T, Jack R, Merrick M (2001) P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105PubMedPubMedCentralCrossRefGoogle Scholar
  4. Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772–785PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bahar B, Yildirim M, Barutcular C (2009) Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Not Bot Horti Agrobot Cluj Napoca 37:45–48Google Scholar
  7. Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LA, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  8. Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, Paparelli E, Parlanti S, Pucciariello C, Santaniello A, Perata P (2013) Low oxygen response mechanisms in green organisms. Int J Mol Sci 14:4734–4761PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535PubMedPubMedCentralGoogle Scholar
  10. Bouain N, Doumas P, Rouached H (2016) Recent advances in understanding the molecular mechanisms regulating the root system response to phosphate deficiency in Arabidopsis. Curr Genomics 17:308–304PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buch-Pedersen MJ, Rudashevskaya EL, Berner TS, Venema K, Palmgren MG (2006) Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase. J Biol Chem 281:38285–38292PubMedCrossRefPubMedCentralGoogle Scholar
  12. Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells. Plant Physiol 122:1387–1397PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7:512–518PubMedCrossRefPubMedCentralGoogle Scholar
  14. Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chellamuthu VR, Ermilova E, Lapina T, Luddecke J, Minaeva E, Herrmann C, Hartmann MD, Forchhammer K (2014) A widespread glutamine-sensing mechanism in the plant kingdom. Cell 159:1188–1199PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root Mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646PubMedCrossRefGoogle Scholar
  18. Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ 26:1839–1850CrossRefGoogle Scholar
  19. Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206PubMedCrossRefPubMedCentralGoogle Scholar
  20. De Pessemier J, Chardon F, Juraniec M, Delaplace P, Hermans C (2013) Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mech Dev 130:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016) TOR signaling and nutrient sensing. Annu Rev Plant Biol 67:261–285PubMedCrossRefPubMedCentralGoogle Scholar
  22. Drew MC (1997) OXYGEN DEFICIENCY AND ROOT METABOLISM: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol 119:57–64PubMedPubMedCentralCrossRefGoogle Scholar
  24. Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, Schroeder JI (2014) Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513:246–250PubMedPubMedCentralCrossRefGoogle Scholar
  25. Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordstrom M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI (2016) CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci 21:16–30PubMedCrossRefPubMedCentralGoogle Scholar
  26. Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H(+)-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ferris R, Taylor G (1994) Stomatal characteristics of four native herbs following exposure to elevated CO2. Ann Bot 73:447–453CrossRefGoogle Scholar
  28. Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG (2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol 53:1003–1016PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gent L, Forde BG (2017) How do plants sense their nitrogen status? J Exp Bot 68:2531–2539PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070CrossRefGoogle Scholar
  33. Hanstein S, de Beer D, Felle HH (2001) Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sensors Actuators B Chem 81:107–114CrossRefGoogle Scholar
  34. Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210:723–731PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hess N, Klode M, Anders M, Sauter M (2011) The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol Plant 143:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM (2006) Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 33:153–163CrossRefGoogle Scholar
  38. Howell KA, Cheng K, Murcha MW, Jenkin LE, Millar AH, Whelan J (2007) Oxygen initiation of respiration and mitochondrial biogenesis in rice. J Biol Chem 282:15619–15631PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–93; sup pp 1–18PubMedCrossRefGoogle Scholar
  40. Ismond KP, Dolferus R, de Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292–1302PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6872–6877PubMedPubMedCentralCrossRefGoogle Scholar
  44. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kojima S, Bohner A, Gassert B, Yuan L, von Wiren N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40PubMedCrossRefPubMedCentralGoogle Scholar
  46. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lan P, Li W, Schmidt W (2012) Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics 11:1156–1166PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lawson T, Simkin AJ, Kelly G, Granot D (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol 203:1064–1081PubMedCrossRefPubMedCentralGoogle Scholar
  49. Leymarie J, Vavasseur A, Lascève G (1998) CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiol Biochem 36:539–543CrossRefGoogle Scholar
  50. Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A 103:12625–12630PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li T, Zhang W, Yin J, Chadwick D, Norse D, Lu Y, Liu X, Chen X, Zhang F, Powlson D, Dou Z (2018a) Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob Chang Biol 24:e511–e521PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li N, Zhang SJ, Zhao Q, Long Y, Guo H, Jia HF, Yang YX, Zhang HY, Ye XF, Zhang ST (2018b) Overexpression of tobacco GCN2 stimulates multiple physiological changes associated with stress tolerance. Front Plant Sci 9:725PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X (2018) G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 9:852PubMedPubMedCentralCrossRefGoogle Scholar
  54. Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ludewig U, Neuhauser B, Dynowski M (2007) Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 581:2301–2308PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161PubMedPubMedCentralCrossRefGoogle Scholar
  58. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870PubMedCrossRefPubMedCentralGoogle Scholar
  59. Merilo E, Laanemets K, Hu H, Xue S, Jakobson L, Tulva I, Gonzalez-Guzman M, Rodriguez PL, Schroeder JI, Brosche M, Kollist H (2013) PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol 162:1652–1668PubMedPubMedCentralCrossRefGoogle Scholar
  60. Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437PubMedCrossRefGoogle Scholar
  61. Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306PubMedCrossRefPubMedCentralGoogle Scholar
  62. Misyura M, Guevara D, Subedi S, Hudson D, McNicholas PD, Colasanti J, Rothstein SJ (2014) Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress. BMC Genomics 15:681PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mlodzinska E, Zboinska M (2016) Phosphate uptake and allocation – a closer look at Arabidopsis thaliana L. and Oryza sativa L. Front Plant Sci 7:1198PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31:1299–1306PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nagarajan VK, Smith AP (2012) Ethylene’s role in phosphate starvation signaling: more than just a root growth regulator. Plant Cell Physiol 53:277–286PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nieves-Cordones M, Miller AJ, Aleman F, Martinez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532PubMedCrossRefPubMedCentralGoogle Scholar
  68. Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci 7:1391PubMedPubMedCentralCrossRefGoogle Scholar
  69. O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutierrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856PubMedCrossRefPubMedCentralGoogle Scholar
  70. O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724PubMedCrossRefPubMedCentralGoogle Scholar
  71. Popova Y, Thayumanavan P, Lonati E, Agrochao M, Thevelein JM (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci U S A 107:2890–2895PubMedPubMedCentralCrossRefGoogle Scholar
  72. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ramirez-Silva L, Ferreira ST, Nowak T, Tuena de Gomez-Puyou M, Gomez-Puyou A (2001) Dimethylsulfoxide promotes K+-independent activity of pyruvate kinase and the acquisition of the active catalytic conformation. Eur J Biochem 268:3267–3274PubMedCrossRefPubMedCentralGoogle Scholar
  74. Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC (2012) The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J Exp Bot 63:6531–6542PubMedPubMedCentralCrossRefGoogle Scholar
  75. Santrucek J, Vrablova M, Simkova M, Hronkova M, Drtinova M, Kveton J, Vrabl D, Kubasek J, Mackova J, Wiesnerova D, Neuwithova J, Schreiber L (2014) Stomatal and pavement cell density linked to leaf internal CO2 concentration. Ann Bot 114:191–202PubMedPubMedCentralCrossRefGoogle Scholar
  76. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69PubMedCrossRefPubMedCentralGoogle Scholar
  77. Shen C, Wang J, Shi X, Kang Y, Xie C, Peng L, Dong C, Shen Q, Xu Y (2017) Transcriptome analysis of differentially expressed genes induced by low and high potassium levels provides insight into fruit sugar metabolism of pear. Front Plant Sci 8:938PubMedPubMedCentralCrossRefGoogle Scholar
  78. Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368PubMedCrossRefPubMedCentralGoogle Scholar
  79. Shin SY, Jeong JS, Lim JY, Kim T, Park JH, Kim JK, Shin C (2018) Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19:532PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 95:10334–10339PubMedPubMedCentralCrossRefGoogle Scholar
  81. Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726–734PubMedCrossRefPubMedCentralGoogle Scholar
  83. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102:12612–12617PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T (2004) Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol 45:1768–1778PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sun L, Di D, Li G, Kronzucker HJ, Shi W (2017) Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. J Plant Physiol 212:94–104PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sutton MA, Bleeker A, Howard C, Erisman J, Abrol Y, Bekunda M, Datta A, Davidson E, de Vries W, Oenema O (2013) Our nutrient world. The challenge to produce more food & energy with less pollution. Centre for Ecology & Hydrology, EdinburghGoogle Scholar
  87. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tapken D, Anschutz U, Liu LH, Huelsken T, Seebohm G, Becker D, Hollmann M (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal 6:ra47PubMedCrossRefPubMedCentralGoogle Scholar
  89. Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J 64:775–789PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H, Bai F, Zhang P, Zhu H, He Y, Luo S, Li L, Luan S (2015) A molecular pathway for CO(2) response in Arabidopsis guard cells. Nat Commun 6:6057PubMedCrossRefPubMedCentralGoogle Scholar
  91. Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci U S A 106:14174–14179PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tsay YF, Ho CH, Chen HY, Lin SH (2011) Integration of nitrogen and potassium signaling. Annu Rev Plant Biol 62:207–226PubMedCrossRefPubMedCentralGoogle Scholar
  93. Tyburski J, Dunajska K, Tretyn A (2009) Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. Plant Growth Regul 59:27–36CrossRefGoogle Scholar
  94. van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367PubMedCrossRefPubMedCentralGoogle Scholar
  95. Voesenek LA, Colmer TD, Pierik R, Millenaar FF, Peeters AJ (2006) How plants cope with complete submergence. New Phytol 170:213–226PubMedCrossRefPubMedCentralGoogle Scholar
  96. von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261CrossRefGoogle Scholar
  97. Wang WH, Kohler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R, Mueller-Roeber B, Tester M, Liu LH (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193:432–444PubMedCrossRefPubMedCentralGoogle Scholar
  98. Wang YY, Cheng YH, Chen KE, Tsay YF (2018a) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122PubMedCrossRefPubMedCentralGoogle Scholar
  99. Wang F, Deng M, Xu J, Zhu X, Mao C (2018b) Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 74:114–122PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wei Z, Zeng X, Qin C, Wang Y, Bai L, Xu Q, Yuan H, Tang Y, Nyima T (2016) Comparative transcriptome analysis revealed genes commonly responsive to varied nitrate stress in leaves of Tibetan hulless barley. Front Plant Sci 7:1067PubMedPubMedCentralGoogle Scholar
  102. Weiland M, Mancuso S, Baluska F (2016) Signalling via glutamate and GLRs in Arabidopsis thaliana. Funct Plant Biol 43:1–25CrossRefGoogle Scholar
  103. Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360PubMedCrossRefGoogle Scholar
  104. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yang SY, Hao DL, Song ZZ, Yang GZ, Wang L, Su YH (2015) RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene 555:305–317PubMedCrossRefPubMedCentralGoogle Scholar
  107. Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO(2) signaling in guard cells: calcium sensitivity response modulation, a Ca(2+)-independent phase, and CO(2) insensitivity of the gca2 mutant. Proc Natl Acad Sci U S A 103:7506–7511PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409PubMedCrossRefGoogle Scholar
  109. Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D (2017) Transcriptome analysis of rice seedling roots in response to potassium deficiency. Sci Rep 7:5523PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhao L, Zhang W, Yang Y, Li Z, Li N, Qi S, Crawford NM, Wang Y (2018) The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Sci Rep 8:1487PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhou Z, Wang Z, Lv Q, Shi J, Zhong Y, Wu P, Mao C (2015) SPX proteins regulate Pi homeostasis and signaling in different subcellular level. Plant Signal Behav 10:e1061163PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University School of BiotechnologyG.G.S. Indraprastha UniversityNew DelhiIndia

Personalised recommendations