Advertisement

Mammalian Neurotransmitter Are Important Signals Mediating Plant Morphogenesis

  • Lauren Alexandra Elizabeth Erland
  • Praveen K. SaxenaEmail author
Chapter

Abstract

In spite of their lack of central organized nervous system, plants possess many of the same signaling compounds which are employed in the mammalian nervous system and commonly referred to as neurotransmitters or neuromodulators. These include classes such as the indoleamines, melatonin and serotonin, and the catecholamines, dopamine, epinephrine (adrenaline), and norepinephrine (noradrenaline) and acetylcholine. These compounds, since their discoveries in plants, have been found to play important and diverse roles in plant life, including organogenesis, growth and development, flowering and reproduction, sensing environmental cues, and survival against a myriad of environmental stresses. This chapter will provide an overview of the roles these compounds play in plant life, and the mechanisms by which these compounds serve to mediate and direct growth, reproduction, and morphogenesis in plants and the as yet unidentified receptors for these compounds.

Keywords

Gamma aminobutyric acid (GABA) Indoleamines Melatonin Neurotransmitters Phytohormones Plant morphogenesis Serotonin Signaling molecules 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the Natural Sciences and Engineering Research Council (NSERC) of Canada (grant number 46741).

References

  1. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adil M, Abbasi BH, Khan T (2015) Interactive effects of melatonin and light on growth parameters and biochemical markers in adventitious roots of Withania somnifera L. Plant Cell Tissue Organ Cult 123:405–412CrossRefGoogle Scholar
  3. Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arnao MB, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48PubMedCrossRefPubMedCentralGoogle Scholar
  6. Askar A, Rubach K, Schormüller J (1972) Dünnschichtchromatographische Trennung der in Bananen vorkommenden Amin-Fraktion. Chem Microbiol Technol Lebensm 1:187–190Google Scholar
  7. Back K, Tan D-X, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2015) Identification and characterization of serotonin as an anti-browning compound of apple and pear. Postharvest Biol Technol 110:183–189CrossRefGoogle Scholar
  10. Bamel K, Gupta R, Gupta SC (2016) Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby. Plant Signal Behav 11:e1187355PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barlow RB, Dixon RO (1973) Choline acetyltransferase in the nettle Urtica dioica L. Biochem J 132:15–18PubMedPubMedCentralGoogle Scholar
  12. Beri V, Gupta R (2007) Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci 80:2386–2388PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boccalandro HE, González CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bowden K, Brown BG, Batty JE (1954) 5-Hydroxytryptamine: its occurrence in cowhage. Nature 174:925–926PubMedCrossRefPubMedCentralGoogle Scholar
  15. Buelow DW, Gisvold O (1944) A phytochemical investigation of Hermidium alipes. J Am Pharm Assoc 3:270–274CrossRefGoogle Scholar
  16. Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56:408–414PubMedCrossRefPubMedCentralGoogle Scholar
  17. Byeon Y, Park S, Kim Y-S, Park DH, Lee S, Back K (2012) Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res 53:107–111PubMedCrossRefPubMedCentralGoogle Scholar
  18. Byeon Y, Lee HY, Lee K, Park S, Back K (2013a) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114PubMedCrossRefPubMedCentralGoogle Scholar
  19. Byeon Y, Park S, Kim Y-S, Back K (2013b) Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase. J Pineal Res 55:357–363PubMedPubMedCentralGoogle Scholar
  20. Byeon Y, Lee HY, Lee K, Back K (2014a) A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants. J Pineal Res 57:147–154PubMedCrossRefPubMedCentralGoogle Scholar
  21. Byeon Y, Yool Lee H, Choi D-W, Back K (2014b) Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts. J Exp Bot 66:709–717PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chandok MR, Sopory SK (1994) 5-Hydroxytryptamine affects turnover of polyphosphoinositides in maize and stimulates nitrate reductase in the absence of light. FEBS Lett 356:39–42PubMedCrossRefGoogle Scholar
  24. Chen Q, Qi W, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol:324–328PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chhabra N, Malik CP (1978) Influence of spectral quality of light on pollen tube elongation in Arachis hypogaea. Ann Bot 42:1109–1117CrossRefGoogle Scholar
  26. Csaba G, Pal K (1982) Effects of insulin, triiodothyronine, and serotonin on plant seed development. Protoplasma 110:20–22CrossRefGoogle Scholar
  27. Cybulski N (1895) O funkcji nadnercza. Gazeta Lekarska 12:299–308Google Scholar
  28. Dai Y-R, Michaels PJ, Flores HE (1993) Stimulation of ethylene production by catecholamines and phenylethylamine in potato cell suspension cultures. Plant Growth Regul 12:219–222CrossRefGoogle Scholar
  29. Das R, Sopory SK (1985) Evidence of regulation of calcium uptake by phytochrome in maize protoplasts. Biochem Biophys Res Comm 128:1455–1460PubMedCrossRefPubMedCentralGoogle Scholar
  30. De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 86:2582–2586PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dekhuijzen HM (1973) The effect of acetylcholine on growth and on growth inhibition by CCC in wheat seedlings. Planta 111:149–156PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dettbarn WD (1962) Acetylcholinesterase activity in Nitella. Nature 194:1175–1176PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dharmawardhana P, Ren L, Amarasinghe V, Moncao M, Thomason J, Ravenscroft D, McCouch S, Ware D, Jaiswal P (2013) A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress. Rice 29:15CrossRefGoogle Scholar
  34. Di Sansebastiano G-P, Fornaciari S, Barozzi F, Piro G, Arru L (2014) New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 15:4565–4582PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ding F, Wang M, Liu B, Zhang S (2017) Exogenous melatonin mitigates photoinhibition by accelerating non-photochemical quenching in tomato seedlings exposed to moderate light during chilling. Front Plant Sci 8:244PubMedPubMedCentralGoogle Scholar
  36. Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31PubMedCrossRefPubMedCentralGoogle Scholar
  37. Emmelin N, Feldberg W (1947) The mechanism of the sting of the common nettle (Urtica urens). J Physiol 106:440–455PubMedPubMedCentralCrossRefGoogle Scholar
  38. Erland LAE, Saxena PK (2018) Melatonin in morphogenesis. In Vitro Cell Dev Biol Plant 54:3–24CrossRefGoogle Scholar
  39. Erland LAE, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10:e1096469–e1096415PubMedPubMedCentralCrossRefGoogle Scholar
  40. Erland LAE, Turi CE, Saxena PK (2016a) Serotonin: an ancient molecule and an important regulator of plant processes. Biotechnol Adv 8:1347–1361CrossRefGoogle Scholar
  41. Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK (2016b) Melatonin in plants and plant culture systems: variability, stability and efficient quantification. Front Plant Sci 7:108CrossRefGoogle Scholar
  42. Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK (2018) Melatonin and serotonin: mediators in the symphony of plant morphogenesis. J Pineal Res 64:e12452CrossRefGoogle Scholar
  43. Ernst M, Hartmann E (1980) Biochemical characterization of an acetylcholine-hydrolyzing enzyme from bean seedlings. Plant Physiol 65:447–450PubMedPubMedCentralCrossRefGoogle Scholar
  44. Evans ML (1972) Promotion of cell elongation in Avena coleoptiles by acetylcholine. Plant Physiol 50(3):414–416PubMedPubMedCentralCrossRefGoogle Scholar
  45. Facchini PJ, De Luca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269:26684–26690PubMedPubMedCentralGoogle Scholar
  46. Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation and metabolic engineering applications. Phytochemistry 54:121–138PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fan J, Hu Z, Xie Y, Chan Z, Chen K, Amombo E, Chen L, Fu J (2015) Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Front Plant Sci 6:36CrossRefGoogle Scholar
  48. Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gatineau F, Fouché JG, Kevers C, Hausman JF, Gaspar T (1997) Quantitative variations of indolyl compounds including IAA, IAA-aspartate and serotonin in walnut microcuttings during root induction. Biol Plant 39:131–137CrossRefGoogle Scholar
  50. Gomes BR, de Siqueira-Soares RC, Dos Santos WD, Marchiosi R, Soares AR, Ferrarese-Filho O (2014) The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signal Behav 9:e977704PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant 160:396–409PubMedCrossRefPubMedCentralGoogle Scholar
  52. Greppin H, Horwitz B (1975) Floral induction and the effect of red and far-red preillumination on the light-stimulated bioelectric response of spinach leaves. Z Pflanzenphysiol 75:243–249CrossRefGoogle Scholar
  53. Greppin H, Horwitz BA, Horwitz LP (1973) Light-stimulated bioelectric response of spinach leaves and photoperiodic induction. Z Pflanzenphysiol 68:336–345CrossRefGoogle Scholar
  54. Grosse W, Artigas F (1983) Incorporation of N-15 ammonia into serotonin in cotyledons of maturing walnuts. Z Naturforsch C J Biosci 38:1057–1058CrossRefGoogle Scholar
  55. Guidotti BB, Gomes BR, de Siqueira-Soares RC, Soares AR, Ferrarese-Filho O (2013) The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signal Behav 8:e25477–e25478PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hadačová V, Hofman J, de Almeida RM, Vacková K, Kutáček M, Klozová E (1981) Choliae esterases and choline acetyltransferase in the seeds of Allium altaicum (Pall.) Reyse. Biol Plant 23:220–227CrossRefGoogle Scholar
  57. Hartmann E (1977) Influence of acetylcholine and light on the bioelectric potential of bean (Phaseolus vulgaris L.) hypocotyl hook. Plant Cell Physiol 18:1203–1207CrossRefGoogle Scholar
  58. Hartmann E (1979) Attempts to demonstrate incorporation of labelled precursors into acetylcholine by Phaseolus vulgaris seedlings. Phytochemistry 18:1643–1646CrossRefGoogle Scholar
  59. Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morre DJ (eds) . Plant biology second messengers in plant growth and development, New York, pp 257–288Google Scholar
  60. Hartmann E, Grasmück I, Lehrbach N, Müller R (1980) The influence of acetylcholine and choline on the incorporation of phosphate into phospholipids of etiolated bean hypocotyl hooks. Z Pflanzenphysiol 97:377–389CrossRefGoogle Scholar
  61. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634PubMedPubMedCentralGoogle Scholar
  62. Hernández IG, Gomez FJV, Cerutti S, Arana MV, Silva MF (2015) Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Biochem 94:191–196PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hernández-Ruiz J, Arnao MB (2008) Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul 55:29–34CrossRefGoogle Scholar
  64. Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hoshino T (1979) Simulation of acetylcholine action by β-indole acetic acid in inducing diurnal change of floral response to chilling under continuous light in Lemna gibba G3. Plant Cell Physiol 20:43–50Google Scholar
  67. Hoshino T (1983) Effects of acetylcholine on the growth of the Vigna seedling. Plant Cell Physiol 24:551–556CrossRefGoogle Scholar
  68. Hoshino T, Oota Y (1978) The occurrence of acetylcholine in Lemna gibba G3. Plant Cell Physiol 19:769–776CrossRefGoogle Scholar
  69. Hourmant A, Rapt F, Morzadec J-M, Féray A, Caroff J (1998) Involvement of catecholic compounds in morphogenesis of in vitro potato plants effect of methylglyoxal-bis (guanylhydrazone). J Plant Physiol 152:64–69CrossRefGoogle Scholar
  70. Hu W, Kong H, Guo Y, Zhang Y, Ding Z, Tie W, Yan Y, Huang Q, Peng M, Shi H, Guo A (2016) Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Front Plant Sci 7:138–112Google Scholar
  71. Huang YM, Kao CH (1992) Calcium in the regulation of corn leaf senescence by light. Bot Bull Acad Sin 33:161–165Google Scholar
  72. Jaffe MJ (1968) Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science 162:1016–1017PubMedCrossRefPubMedCentralGoogle Scholar
  73. Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol 46:768–777PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jaffe MJ (1972) Acetylcholine as a native metabolic regulator of phytochrome-mediated processes in bean roots. Recent Adv Phytochem 5:81–104CrossRefGoogle Scholar
  75. Jaffe MJ (1976) Phytochrome-controlled acetylcholine synthesis at the endoplasmic reticulum. In: Smith H (ed) Light and plant development. Butterworths, London, pp 333–344CrossRefGoogle Scholar
  76. Jaffe MJ, Thoma L (1973) Rapid phytochrome-mediated changes in the uptake by bean roots of sodium acetate 1-14C and their modification by cholinergic drugs. Planta 113:283–291PubMedCrossRefPubMedCentralGoogle Scholar
  77. Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292CrossRefGoogle Scholar
  78. Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kamisaka S (1979) Catecholamine stimulation of the gibberellin action that induces lettuce hypocotyl elongation. Plant Cell Physiol 20:1199–1207CrossRefGoogle Scholar
  80. Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 48:844–848PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kandeler R (1972) The effect of acetylcholine on the photoperiodic control of flowering in Lemnaceae. Z Pflanzenphysiol 67:86–92CrossRefGoogle Scholar
  82. Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kang K, Kang S, Lee K, Park M, Back K (2008) Enzymatic features of serotonin biosynthetic enzymes and serotonin biosynthesis in plants. Plant Signal Behav 3:389–390PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kang K, Kim Y-S, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kasturi R (1978) De novo synthesis of acetylcholinesterase in roots of Pisum sativum. Phytochemistry 17:647–649CrossRefGoogle Scholar
  86. Kaur A, Thukral AK (1990) Effect of animal hormones on the growth, protein and sugar contents of Vigna unguiculata L. seedlings. Indian J Plant Physiol 33:259–261Google Scholar
  87. Khurana JP, Tamot BK, Maheshwari N, Maheshwari SC (1987) Role of catecholamines in promotion of flowering in a short-day duckweed, Lemna paucicostata 6746. Plant Physiol 85:10–12PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kim M, Seo H, Park C, Park WJ (2016) Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize. J Plant Physiol 190:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kirshner RL, White JM, Pike CS (1975) Control of bean bud ATP levels by regulatory molecules and phytochrome. Physiol Plant 34:373–377CrossRefGoogle Scholar
  90. Kolar J, Johnson CH, Machackova I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol Plant 118:605–612CrossRefGoogle Scholar
  91. Kołodziejczyk I, Bałabusta M, Szewczyk R, Posmyk MM (2015) The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol Plant 37:105–111CrossRefGoogle Scholar
  92. Kong K-H, Lee J-L, Park H-J, Cho S-H (1998) Purification and characterization of the tyrosinase isozymes of pine needles. Biochem Mol Biol Int 45:717–724PubMedPubMedCentralGoogle Scholar
  93. Korkmaz A, Değer Ö, Cuci Y (2014) Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci Hortic 172:242–247CrossRefGoogle Scholar
  94. Korkmaz A, Yakupoglu G, Köklü Ş, Cuci Y, Kocacinar F (2017) Determining diurnal and seasonal changes in melatonin andtryptophan contents of eggplant (Solanum melongena L.). Turk J Bot 41:356–366CrossRefGoogle Scholar
  95. Kostir J, Klenha J, Vyroba VJR (1965) The effect of acetylcholine on seed germination in agricultural plants. Rost Vyroba Praha 12:1239–1279Google Scholar
  96. Koyama FC, Carvalho TLG, Alves E, da Silva HB, de Azevedo MF, Hemerly AS, Garcia CR (2013) The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum. J Eukaryot Microbiol 60:646–651PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kuklin AI, Conger BV (1995) Enhancement of somatic embryogenesis in orchardgrass leaf cultures by epinephrine. Plant Cell Rep 14:641–644PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440CrossRefGoogle Scholar
  99. Lawson VR, Brady RM, Campbell A, Knox GD, Walls RL (1978) Interaction of acetylcholine chloride with IAA, GA 3 and red light in the growth of excised apical coleoptile segments. Bull Torrey Bot Club 105:187CrossRefGoogle Scholar
  100. Lazár D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal Behav 8:e23279PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lee H-J, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res:1–48Google Scholar
  102. Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62:e12379CrossRefGoogle Scholar
  103. Lei Q, Wang L, Tan D-X, Zhao Y, Zheng XD, Chen H, Li QT, Zuo BX, Kong J (2013) Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development. J Pineal Res 55:443–451PubMedPubMedCentralGoogle Scholar
  104. Lembeck F, Skofitsch G (1984) Distribution of serotonin in Juglans regia seeds during ontogenetic development and germination. Z Pflanzenphysiol 114:349–353CrossRefGoogle Scholar
  105. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587–2587CrossRefGoogle Scholar
  106. Li C, Tan D-X, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680PubMedCrossRefPubMedCentralGoogle Scholar
  107. Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, Chu C (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  108. Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front Plant Sci 8:89–12Google Scholar
  109. Litwinczuk W, Wadas-Boron M (2009) Development of highbush blueberry (Vaccinium corymbosum hort. non L.) in vitro shoot cultures under the influence of melatonin. Acta Sci Pol Hort Cult 8:3–12Google Scholar
  110. Maheshwari SC, Gupta R and Gharyal PK (1982) Cholinesterases in plants. In: Sen SP (ed) Recent developments in plant science. New Delhi, pp 145–160Google Scholar
  111. Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67:3023–3029PubMedCrossRefPubMedCentralGoogle Scholar
  112. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419PubMedCrossRefPubMedCentralGoogle Scholar
  113. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45PubMedPubMedCentralGoogle Scholar
  114. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trend Plant Sci 16:300–309CrossRefGoogle Scholar
  115. Miyawaki T, Matsumoto S, Takahashi W, Tanaka O (2014) Effect of heat-treated noradrenaline on flowering in Lemna. Biosci Biotechnol Biochem 77:1586–1588CrossRefGoogle Scholar
  116. Momonoki YS (1992) Occurrence of acetylcholine-hydrolyzing activity at the stele-cortex interface. Plant Physiol 99:130–133PubMedPubMedCentralCrossRefGoogle Scholar
  117. Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114:47–53PubMedPubMedCentralCrossRefGoogle Scholar
  118. Momonoki YS, Hineno C, Noguchi K (1998) Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution controlled by ACh in gravistimulated maize seedlings. Plant Prod Sci 1:83–88PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mukherjee I (1980) The effect of acetylcholine on hypocotyl elongation in soybean. Plant Cell Physiol 21:1657–1660PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mukherjee S, David A, Yadav S, Baluska F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152:714–728PubMedCrossRefPubMedCentralGoogle Scholar
  121. Murch SJ, Saxena PK (2002a) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560PubMedPubMedCentralGoogle Scholar
  122. Murch SJ, Saxena PK (2002b) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536CrossRefGoogle Scholar
  123. Murch SJ, Saxena PK (2004) Role of indoleamines in regulation of morphogenesis in in vitro cultures of St. John’s wort (Hypericum perforatum L.). Acta Hortic 629:425–432CrossRefGoogle Scholar
  124. Murch SJ, Krishnaraj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704PubMedCrossRefPubMedCentralGoogle Scholar
  125. Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s Wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793CrossRefGoogle Scholar
  126. Murch SJ, Alan AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283PubMedCrossRefPubMedCentralGoogle Scholar
  127. Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res 49:95–100PubMedPubMedCentralGoogle Scholar
  128. Okatani A, Ikegami T, Takahashi W, Tanaka O (2014) Induction and promotion of flowering by heat-treated catecholamines in Lemna paucicostata. Biosci Biotechnol Biochem 74:2339–2341CrossRefGoogle Scholar
  129. Oota Y (1977) Removal by chemicals of photoperiodic light requirements of Lemna gibba G3. Plant Cell Physiol 18:95–105CrossRefGoogle Scholar
  130. Oota Y, Hoshino T (1974) Diurnal change in temperature sensitivity Lemna gibba G3 induced by acetylcholine in continuous light. Plant Cell Physiol 15:1063–1072Google Scholar
  131. Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53:385–389PubMedCrossRefPubMedCentralGoogle Scholar
  132. Park S, Byeon Y, Back K (2013) Functional analyses of three ASMT gene family members in rice plants. J Pineal Res 55:409–415PubMedPubMedCentralGoogle Scholar
  133. Park S, Byeon Y, Lee HY, Kim YS, Ahn T, Back K (2014) Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J Pineal Res 57:348–355PubMedCrossRefPubMedCentralGoogle Scholar
  134. Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508PubMedCrossRefPubMedCentralGoogle Scholar
  135. Pelagio-Flores R, Muñoz Parra E, Ortíz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288PubMedCrossRefPubMedCentralGoogle Scholar
  136. Penel C, Darimont E, Greppin H, Gaspar TH (2008) Effect of acetylcholine on growth and isoperoxidases of the lentil (Lens culinaris) root. Biol Plant 18:293–298CrossRefGoogle Scholar
  137. Pickles VR, Sutcliffe JF (1955) The effects of 5-hydroxytryptamine, indole-3-acetic acid, and some other substances, on pigment effusion, sodium uptake, and potassium efflux, by slices of red beetroot in vitro. Biochim Biophys Acta 17:244–251PubMedCrossRefPubMedCentralGoogle Scholar
  138. Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31PubMedCrossRefPubMedCentralGoogle Scholar
  139. Posmyk MM, Bałabusta M, Wieczorek M, Sliwinska E, Janas KM (2009) Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46:214–223PubMedCrossRefPubMedCentralGoogle Scholar
  140. Protacio CM, Dai Y-R, Lewis EF, Flores HE (1992) Growth stimulation by catecholamines in plant tissue/organ cultures. Plant Physiol 98:89–96PubMedPubMedCentralCrossRefGoogle Scholar
  141. Qian Y, Tan D-X, Reiter RJ, Shi H (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci Rep 5:15815PubMedPubMedCentralCrossRefGoogle Scholar
  142. Raghuram N, Sopory SK (1995) Evidence for some common signal-transduction events for opposite regulation of nitrate reductase and phytochrome-I gene-expression by light. Plant Mol Biol 29:25–35PubMedCrossRefPubMedCentralGoogle Scholar
  143. Raghuram N, Sopory S (1999) Roles of nitrate, nitrite and ammonium ion in phytochrome regulation of nitrate reductase gene expression in maize. IUBMB Life 47:239–249CrossRefGoogle Scholar
  144. Ramakrishna A, Giridhar P, Ravishankar GA (2009) Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L. Plant Signal Behav 4:1136–1141PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ramakrishna A, Giridhar P, Jobin M, Paulose CS, Ravishankar GA (2011) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tissue Organ Cult 108:267–278CrossRefGoogle Scholar
  146. Regula I (1986) The presence of serotonin in the embryo of black walnut (Juglans nigra). Acta Bot Croat 45:91–95Google Scholar
  147. Reiter RJ, Poeggeler B, Tan D-X, Chen D-L, Manchester LC, Guerrero JM (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15:103–116Google Scholar
  148. Reiter R, Tan D-X, Zhou Z, Cruz MH, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437PubMedPubMedCentralCrossRefGoogle Scholar
  149. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278PubMedCrossRefPubMedCentralGoogle Scholar
  150. Reynolds JD, Kimbrough TD, Weekley LB (1985) The effect of light quality on 5-hydroxyindole metabolism in leaves of Sedum morganianum (Crassulaceae). Biochem Physiol Pflanzen 180:345–351CrossRefGoogle Scholar
  151. Roshchina VV (1990) Regulation of chloroplast reactions by secondary metabolites acetylcholine and biogenic amines. Acta Bot Croat 49:29–35Google Scholar
  152. Roshchina VV (2001a) Molecular-cellular mechanisms in pollen allelopathy. Allelopath J 8:11–28Google Scholar
  153. Roshchina VV (2001b) Neurotransmitters in plant life. Science Publishers, EnfieldCrossRefGoogle Scholar
  154. Roshchina VV (2005) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Russ Acad Sci 32:229–233CrossRefGoogle Scholar
  155. Roshchina VV (2006) Chemical signaling in plant microspore cells. Biol Bull Russ Acad Sci 33:332–338CrossRefGoogle Scholar
  156. Roshchina VV, Melnikova EV (1998) Allelopathy and plant reproductive cells: participation of acetylcholine and histamine in signaling in the interactions of pollen and pistil. Allelopathy J 5:171–182Google Scholar
  157. Roshchina VV, Mukhin EN (1985a) Acetylcholinesterase activity in chloroplasts and acetylcholine effects on photochemical reactions. Photosynthetica 19:164–171Google Scholar
  158. Roshchina VV, Mukhin EN (1985b) Acetylcholine action on the photochemical reactions of pea chloroplasts. Plant Sci 42:95–98CrossRefGoogle Scholar
  159. Roshchina VV, Yashin VA (2014) Neurotransmitters catecholamines and histamine in allelopathy: plant cells as models in fluorescence microscopy. Allelopathy J 24:1–15Google Scholar
  160. Rueffer M, Zenk MH (1987) Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Z Naturforsch 42c:319–332CrossRefGoogle Scholar
  161. Rush MD, Kutchan TM, Coscia CJ (1985) Correlation of the appearance of morphinan alkaloids and laticifer cells in germinating Papaver bracteatum seedlings. Plant Cell Rep 4:237–240PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguir S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ (2016) COP1 and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin. J Pineal Res 61:41–51PubMedCrossRefPubMedCentralGoogle Scholar
  164. Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012a) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol Biochem 61:162–168PubMedCrossRefPubMedCentralGoogle Scholar
  165. Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012b) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J Pineal Res 52:38–46PubMedCrossRefPubMedCentralGoogle Scholar
  166. Sarrou E, Therios I, Dimassi-Theriou K (2014) Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful. Turk J Bot 38:293–301CrossRefGoogle Scholar
  167. Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57:185–191PubMedCrossRefPubMedCentralGoogle Scholar
  168. Shi H, Reiter RJ, Tan D-X, Chan Z (2014) INDOLE-3-ACETIC ACID INDUCIBLE 17positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58:26–33PubMedCrossRefPubMedCentralGoogle Scholar
  169. Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015a) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694PubMedCrossRefPubMedCentralGoogle Scholar
  170. Shi H, Tan D-X, Reiter RJ, Ye T, Yang F, Chan Z (2015b) Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res 58:335–342PubMedCrossRefPubMedCentralGoogle Scholar
  171. Shi H, Wang X, Tan D-X, Reiter RJ, Chan Z (2015c) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.). J Pineal Res 59:120–131PubMedCrossRefPubMedCentralGoogle Scholar
  172. Shi H, Wei Y, He C (2016a) Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. Plant Physiol Biochem 100:150–155PubMedCrossRefPubMedCentralGoogle Scholar
  173. Shi H, Wei Y, Wang Q, Reiter RJ, He C (2016b) Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis. J Pineal Res 60:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  174. Skirycz A, Swiedrych A, Szopa J (2005) Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  175. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130PubMedPubMedCentralGoogle Scholar
  176. Sliwiak J, Dauter Z, Jaskolski M (2016) Crystal structure of Hyp-1, a Hypericum perforatum PR-10 protein, in complex with melatonin. Front Plant Sci 7:668PubMedPubMedCentralCrossRefGoogle Scholar
  177. Smallman BN, Maneckjee A (1981) The synthesis of acetylcholine by plants. Biochem J 194:361PubMedPubMedCentralCrossRefGoogle Scholar
  178. Steward FC, Bidwell RGS (1958) Nitrogen metabolism, respiration, and growth of cultured plant tissue: PART IV. The impact of growth on protein metabolism and respiration of carrot tissue explants. General discussion of results. J Exp Bot 9:285–305CrossRefGoogle Scholar
  179. Steward FC, Bidwell RGS, Yemm EW (1958) Nitrogen metabolism, respiration, and growth of cultured plant tissue: part i. experimental design, techniques, and recorded data: Part II. The interpretation of specific activity data in tracer experiments: Part III. Nitrogen metabolism and respiration of carrot tissue explants as revealed by experiments with C14-labelled substrates. J Exp Bot 1:11–51CrossRefGoogle Scholar
  180. Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66:657–668PubMedCrossRefPubMedCentralGoogle Scholar
  181. Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YD (2016) A label-free differential proteomics analysis reveals the effect of melatonin in promoting fruit ripening and anthocyanin accumulation upon post-harvest in tomatoes. J Pineal Res. 61:138–153PubMedCrossRefPubMedCentralGoogle Scholar
  182. Swiedrych A, Stachowiak J, Szopa J (2004) The catecholamine potentiates starch mobilization in transgenic potato tubers. Plant Physiol Biochem 42:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  183. Szafrańska K, Glińska S, Janas KM (2012) Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots. Biol Plant 57:91–96CrossRefGoogle Scholar
  184. Szafrańska K, Reiter RJ, Posmyk MM (2016) Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front Plant Sci 7:789–712CrossRefGoogle Scholar
  185. Szopa J, Wilczynski G, Fiehn O, WEnczel A, Willmitzer L (2001) Identification and quantification of catecholamines in potato plants (Solarium tuberosum) by GC-MS. Phytochemistry 58:315–320PubMedCrossRefPubMedCentralGoogle Scholar
  186. Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724–1729PubMedCrossRefPubMedCentralGoogle Scholar
  187. Tan D-X, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2009) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 85:607–623PubMedPubMedCentralGoogle Scholar
  188. Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2012) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 54:127–138PubMedCrossRefPubMedCentralGoogle Scholar
  189. Tan D-X, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40PubMedCrossRefPubMedCentralGoogle Scholar
  190. Tanada T (1972) On the involvement of acetylcholine in phytochrome action. Plant Physiol 49:860–861PubMedPubMedCentralCrossRefGoogle Scholar
  191. Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164:878–885PubMedCrossRefPubMedCentralGoogle Scholar
  192. Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52:332–339PubMedCrossRefPubMedCentralGoogle Scholar
  193. Toriyama H (1978) Observational and experimental studies of the meristem of leguminous plants. I. Effects of acetylcholine, red light and far-red light upon the protoplasts of root tip meristem. Cytologia 43:325–337CrossRefGoogle Scholar
  194. Tretyn A (1987) Influence of red light and acetylcholine on 45Ca2+ uptake by oat coleoptile cells. Cell Biol Int Rep 11:887–896CrossRefGoogle Scholar
  195. Tretyn A, Kendrick RE (1991) Acetylcholine in plants: Presence, metabolism and mechanism of action. Bot Rev 57:33–73CrossRefGoogle Scholar
  196. Tretyn A, Kopcewicz J, Ślesak E (1988) Interaction of light and the cholinergic system in the regulation of seed germination. Biol Plant 30:338–342CrossRefGoogle Scholar
  197. Turi CE, Axwik KE, Smith A, Saxena PK, Murch SJ (2014) Galanthamine, an anticholinesterase drug, effects plant growth and development in Artemisia tridentate Nutt. via modulation of auxin and neutrotransmitter signaling. Plant Signal Behav 9:e28645PubMedPubMedCentralCrossRefGoogle Scholar
  198. Udenfriend S, Lovenberg W, Sjoerdsma A (1959) Physiologically active amines in common fruits and vegetables. Arch Biochem Biophys 85:487–490PubMedCrossRefPubMedCentralGoogle Scholar
  199. Verbeek M, Vendrig JC (1977) Are acetylcholine-like cotyledon-factors involved in the growth of the cucumber hypocotyl? Z Pflanzenphysiol 83:335–340CrossRefGoogle Scholar
  200. Verelst WIM, Asard HAN (2004) Analysis of an Arabidopsis thaliana protein family, structurally related to cytochromes b 561 and potentially involved in catecholamine biochemistry in plants. J Plant Physiol 161:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  201. Waalkes TP, Sjoerdsma A, Creveling CR, Weissbach H, Udenfriend S (1958) Serotonin, norepinephrine, and related compounds in bananas. Science 127:648–650PubMedCrossRefPubMedCentralGoogle Scholar
  202. Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2012a) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302PubMedCrossRefPubMedCentralGoogle Scholar
  203. Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012b) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 53:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  204. Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J Pineal Res:424–434Google Scholar
  205. Wang P, Sun X, Wang N, Tan DX, Ma F (2015) Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J Pineal Res 58:479–489PubMedCrossRefPubMedCentralGoogle Scholar
  206. Wang Q, An B, Wei Y, Reiter RJ, Shi H, Lu H, He C (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 07:1–11Google Scholar
  207. Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9:e93462PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707PubMedCrossRefPubMedCentralGoogle Scholar
  209. Wei Y, Zeng H, Hu W, Chen L, He C, Shi H (2016) Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Front Plant Sci 7:676–615PubMedPubMedCentralGoogle Scholar
  210. Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:787–711CrossRefGoogle Scholar
  211. Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Machackova I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158:1491–1493CrossRefGoogle Scholar
  212. Wurzinger B, Mair A, Pfister B, Teige M (2014) Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6:8–12CrossRefGoogle Scholar
  213. Xue H-W, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156PubMedPubMedCentralCrossRefGoogle Scholar
  214. Yunghans H, Jaffe MJ (1970) Phytochrome controlled adhesion of mung bean root tips to glass: a detailed characterization of the phenomenon. Physiol Plant 23:1004–1016CrossRefGoogle Scholar
  215. Yunghans H, Jaffe MJ (1972) Rapid respiratory changes due to red light or acetylcholine during the early events of phytochrome-mediated photomorphogenesis. Plant Physiol 49:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  216. Zhang N, Zhang H-J, Zhao B, Sun QQ, Cao YY, Li R, Qu XX, Weeda S, Li L, Ren S, Reiter RJ, Guo YD (2013a) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50PubMedCrossRefPubMedCentralGoogle Scholar
  217. Zhang N, Zhao B, Zhang HJ, Weeda S (2013b) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54(1):15–23PubMedCrossRefPubMedCentralGoogle Scholar
  218. Zhang H-J, Zhang N, Yang R-C, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197–117PubMedPubMedCentralGoogle Scholar
  220. Zhao Y, Tan D-X, Lei Q, Chen H, Wang L, Li QT, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55:79–88PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, Ma F (2015a) Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res 59:255–266PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F (2015b) Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 59:109–119PubMedCrossRefPubMedCentralGoogle Scholar
  223. Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D, Li Q, Han Z, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236–41212PubMedPubMedCentralCrossRefGoogle Scholar
  224. Zohar R, Izhaki I, Koplovich A, Ben-Shlomo R (2011) Phytomelatonin in the leaves and fruits of wild perennial plants. Phytochem Lett 4:222–226CrossRefGoogle Scholar
  225. Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J (2014) Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57:408–417PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lauren Alexandra Elizabeth Erland
    • 1
  • Praveen K. Saxena
    • 1
    Email author
  1. 1.Department of Plant AgricultureGosling Research Institute for Plant Preservation, University of GuelphGuelphCanada

Personalised recommendations