Advertisement

A Tale of Sugars and Hormones: Perception and Responses

  • Muhammed Jamsheer K 
  • Sunita Jindal
  • Mohan Sharma
  • Manvi Sharma
  • Dhriti Singh
  • Archna Tiwari
  • Harshita B. Saksena
  • Bhuwaneshwar Mishra
  • Sunita Kushwah
  • Zeeshan Z. Banday
  • Ashverya LaxmiEmail author
Chapter

Abstract

The survival of organisms is dependent on the perception of various external and internal cues and modulating growth according to the available conditions. This is achieved through highly coordinated and interconnected signalling pathways which are highly complex in eukaryotic systems. In order to circumvent the sessile nature, plants are evolved to have enhanced plasticity and robust environmental sensing mechanisms. Sugars produced by the plants are perceived by a dedicated set of receptors which leads to the modulation of the specific signalling pathway to ultimately fine-tune plant growth and defence responses according to the sugar and energy availability. Different phytohormone signalling pathways which originated at different facets of plant evolution play a pivotal role in controlling the growth, development and defence strategies. Research in the past two decades uncovered the extent of interaction of sugar and phytohormone signalling pathways in controlling and fine-tuning various plant growth and stress responses. The following chapter concisely summarizes the molecular and physiological interaction of different sugar signalling pathways with hormone signalling pathways which is ultimately important in the regulation of plant development and stress responses.

Keywords

Energy signalling Hexokinase 1 Phytohormones Regulators of G-protein signalling Signalling crosstalk SNF-related protein kinase 1 Sugar signalling Target of rapamycin (TOR) 

Notes

Acknowledgements

The research in AL laboratory is supported by Project Grants from the Department of Biotechnology, Government of India, and a Core Grant from the National Institute of Plant Genome Research. MJK, SJ, MS, MS, DS, AT, HBS, BM, SK and ZZB duly acknowledge research fellowships from the Department of Biotechnology, Government of India; Department of Science and Technology, Government of India; Council of Scientific and Industrial Research, Government of India; and University Grants Commission, Government of India. The authors acknowledge DBT-eLibrary Consortium (DeLCON) for providing access to e-resources.

References

  1. Abreu ME, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aki T, Konishi M, Kikuchi T, Fujimori T, Yoneyama T, Yanagisawa S (2007) Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis. J Exp Bot 58:3239–3248PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096PubMedPubMedCentralGoogle Scholar
  6. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424PubMedCrossRefPubMedCentralGoogle Scholar
  7. Asghari M, Aghdam MS (2010) Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci Technol 21:502–509CrossRefGoogle Scholar
  8. Ayers AR, Ebel J, Valent B, Albersheim P (1976) Host-pathogen interactions: X. fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57:760–765PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impingeon a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berckmans B, Vassileva V, Schmid SPC, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei CLA, Koncz C, Bogre L et al (2011) Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23:3671–3683PubMedPubMedCentralCrossRefGoogle Scholar
  12. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9:1169–1179PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolouri Moghaddam MR, Van Den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63(11):3989–3998PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bolouri Moghaddam MR, Van Den Ende W (2013) Sweet immunity in the plant circadian regulatory network. J Exp Bot 64:1439–1449PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van Den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact 22:487–497PubMedCrossRefPubMedCentralGoogle Scholar
  19. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238PubMedCrossRefPubMedCentralGoogle Scholar
  20. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449PubMedCrossRefPubMedCentralGoogle Scholar
  21. Braun N, de Saint GA, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol 158:225–238PubMedCrossRefPubMedCentralGoogle Scholar
  22. Broeckx T, Hulsmans S, Rolland F (2016) The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J Exp Bot 67:6215–6252PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cai W, Li X, Liu Y, Wang Y, Zhou Y, Xu T, Xiong Y (2017) COP1 integrates light signals to ROP2 for cell cycle activation. Plant Signal Behav 12:e1363946PubMedPubMedCentralCrossRefGoogle Scholar
  24. Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73:897–909PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592PubMedPubMedCentralCrossRefGoogle Scholar
  26. Castro PH, Verde N, Tavares RM, Bejarano ER, Azevedo H (2016) Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. Plant Signal Behav 13:e1179417CrossRefGoogle Scholar
  27. Chen J-G, Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol 389:338–350PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen PW, Lu CA, Yu TS, Tseng TH, Wang CS, Yu SM (2002) Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J Biol Chem 277:6113641–61113649Google Scholar
  29. Chen J-G, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chen PW, Chiang CM, Tseng TH, Yu SM (2006) Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18:2326–2340PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chen L, Su Z-Z, Huang L, Xia F-N, Qi H, Xie L-J, Xiao S, Chen Q-F (2017) The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front Plant Sci 8:1201PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cho Y-H, Yoo S-D (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7:e1001263PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cho Y-H, Yoo S-D, Sheen J (2006) Regulatory functions of nuclear Hexokinase1 complex in glucose signaling. Cell 127:579–589PubMedCrossRefPubMedCentralGoogle Scholar
  37. Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, Lee YH, Kwon YK, Cho MH, Bhoo SH, Hahn TR (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cho Y-H, Hong J-W, Kim E-C, Yoo S-D (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cho H-Y, Wen T-N, Wang Y-T, Shih M-C (2016) Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J Exp Bot 67:2745–2760PubMedPubMedCentralCrossRefGoogle Scholar
  40. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230PubMedPubMedCentralCrossRefGoogle Scholar
  41. Colaneri AC, Tunc-Ozdemir M, Huang J, Jones AM (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190PubMedCrossRefPubMedCentralGoogle Scholar
  43. Crozet P, Margalha L, Butowt R, Fernandes N, Elias CA, Orosa B, Tomanov K, Teige M, Bachmair A, Sadanandom A, González EB (2016) SUMOylation represses SnRK1 signaling in Arabidopsis. Plant J 85:120–133PubMedPubMedCentralCrossRefGoogle Scholar
  44. Czarnecki O, Yang J, Wang X, Wang S, Muchero W, Tuskan GA, Chen JG (2014) Characterization of MORE AXILLARY GROWTH genes in Populus. PLoS One 9:e102757PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granota D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266PubMedPubMedCentralCrossRefGoogle Scholar
  46. Das PK, Shin DH, Choi S-B, Park Y-I (2012) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34:501–507PubMedPubMedCentralCrossRefGoogle Scholar
  47. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–486PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, Canlas P, Van Bockhaven J, De Waele E, Demeestere K, Ronald P, Hofte M (2018) Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. New Phytol 217:305–319PubMedCrossRefPubMedCentralGoogle Scholar
  49. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445PubMedPubMedCentralCrossRefGoogle Scholar
  50. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016) TOR signaling and nutrient sensing. Annu Rev Plant Biol 67:261–285PubMedPubMedCentralCrossRefGoogle Scholar
  52. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dong CJ, Wang XL, Shang QM (2011) Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Sci Hortic 129:629–636CrossRefGoogle Scholar
  54. Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M (2015) Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci 6:677PubMedPubMedCentralGoogle Scholar
  55. Dong Z, Yu Y, Li S, Wang J, Tang S, Huang R (2016) Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol Plant 9:126–135PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841PubMedPubMedCentralCrossRefGoogle Scholar
  57. Eichmann R, Schäfer P (2015) Growth versus immunity – a redirection of the cell cycle? Curr Opin Plant Biol 26:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  58. Emanuelle S, Hossain MI, Moller IE, Pedersen HL, van de Meene AML, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WGT et al (2015) SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J 82:183–192PubMedCrossRefPubMedCentralGoogle Scholar
  59. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–480PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fennell H, Olawin A, Mizanur R, Ken I, Chen JG, Ullah H (2012) Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling. Plant Signal Behav 7:1771–1780CrossRefGoogle Scholar
  61. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ferrari S (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49PubMedPubMedCentralCrossRefGoogle Scholar
  63. Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759PubMedPubMedCentralCrossRefGoogle Scholar
  64. Finet C, Jaillais Y (2012) AUXOLOGY: when auxin meets plant evo-devo. Dev Biol 369:19–31PubMedCrossRefPubMedCentralGoogle Scholar
  65. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fonseca S, Chico JM, Solano R (2009a) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547PubMedCrossRefPubMedCentralGoogle Scholar
  67. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009b) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedCrossRefPubMedCentralGoogle Scholar
  68. Franco-Zorrilla JM, Martín AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fu Y, Lim S, Urano D, Tunc-Ozdemir M, Phan NG, Elston TC, Jones AM (2014) Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell 156:1084–1095PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gao X-Q, Liu CZ, Li DD, Zhao TT, Li F, Jia XN, Zhao X-Y, Zhang XS (2016) The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. PLoS Genet 12:e1006228PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM (2017) Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front Plant Sci 8:1378PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126PubMedPubMedCentralCrossRefGoogle Scholar
  73. Goetz M, Godt DE, Roitsch T (2000) Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant J 22:515–522PubMedCrossRefPubMedCentralGoogle Scholar
  74. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefPubMedCentralGoogle Scholar
  75. Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P (2005) A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant J 44:633–645PubMedCrossRefPubMedCentralGoogle Scholar
  76. Grigston JC, Osuna D, Scheible W-R, Liu C, Stitt M, Jones AM (2008) D-glucose sensing by a plasma membrane regulator of G signaling protein, at RGS1. FEBS Lett 582:3577–3584PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4:1435–1441PubMedPubMedCentralGoogle Scholar
  78. Guo H, Li L, Aluru M, Aluru S, Yin Y (2013a) Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16:545–553PubMedCrossRefPubMedCentralGoogle Scholar
  79. Guo R, Shen W, Qian H, Zhang M, Liu L, Wang Q (2013b) Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. J Exp Bot 64:5707–5719PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gupta A, Singh M, Jones AM, Laxmi A (2012) Hypocotyl directional growth in Arabidopsis: a complex trait. Plant Physiol 159:1463–1476PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gupta A, Singh M, Laxmi A (2015a) Multiple interactions between glucose and brassinosteroid signal transduction pathways in arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol 168:1091–1105PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gupta A, Singh M, Laxmi A (2015b) Interaction between glucose and brassinosteroid during regulation of lateral root development in Arabidopsis thaliana. Plant Physiol 168:307–320PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26:118–130CrossRefGoogle Scholar
  85. Hao Y, Wang H, Qiao S, Leng L, Wang X (2016) Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 113:10418–10423PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard J, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922PubMedPubMedCentralCrossRefGoogle Scholar
  88. Herbers K, Meuwly P, Frommer W, Metraux J, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22:2680–2696PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648PubMedPubMedCentralCrossRefGoogle Scholar
  91. Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300CrossRefGoogle Scholar
  92. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefPubMedCentralGoogle Scholar
  93. Huang J, Taylor JP, Chen J-G, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238PubMedPubMedCentralCrossRefGoogle Scholar
  94. Huang J-P, Tunc-Ozdemir M, Chang Y, Jones AM (2015) Cooperative control between AtRGS1 and AtHXK1 in a WD40-repeat protein pathway in Arabidopsis thaliana. Front Plant Sci 6:851PubMedPubMedCentralGoogle Scholar
  95. Hulsmans S, Rodriguez M, De Coninck B, Rolland F (2016) The SnRK1 energy sensor in plant biotic interactions. Trends Plant Sci 21:648–661PubMedCrossRefPubMedCentralGoogle Scholar
  96. Inui H, Yamaguchi Y, Hirano S (1997) Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase and l-phenylalanine ammonia-lyase induction in rice suspension culture. Biosci Biotechnol Biochem 61:975–978PubMedCrossRefPubMedCentralGoogle Scholar
  97. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86PubMedCrossRefPubMedCentralGoogle Scholar
  98. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefPubMedCentralGoogle Scholar
  99. Jamsheer KM, Laxmi A (2014) DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One 9:e99074CrossRefGoogle Scholar
  100. Jamsheer KM, Laxmi A (2015) Expression of Arabidopsis FCS-like zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. Front Plant Sci 6:1–12CrossRefGoogle Scholar
  101. Jamsheer KM, Sharma M, Singh D, Mannully CT, Jindal S, Shukla BN, Laxmi A (2018) FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J 94:232–245CrossRefGoogle Scholar
  102. Janda M, Ruelland E (2015) Magical mystery tour: salicylic acid signalling. Environ Exp Bot 114:117–128CrossRefGoogle Scholar
  103. Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19PubMedPubMedCentralGoogle Scholar
  104. Jiang CZ, Rodermel SR, Shibles RM (1993) Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiol 101:105–112PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405PubMedPubMedCentralCrossRefGoogle Scholar
  106. Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254PubMedCrossRefPubMedCentralGoogle Scholar
  107. Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026PubMedPubMedCentralCrossRefGoogle Scholar
  108. Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen J-G, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci 104:17317–17322PubMedCrossRefPubMedCentralGoogle Scholar
  109. Jossier M, Bouly J-P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109:19486–19491PubMedCrossRefGoogle Scholar
  111. Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7:13245PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kays SJ, Pallas JE (1980) Inhibition of photosynthesis by ethylene. Nature 285:51–52CrossRefGoogle Scholar
  113. Kelly G, David-Schwartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D (2012) The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. Plant Physiol 159:47–51PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D (2013) Hexokinase mediates stomatal closure. Plant J 75:977–988PubMedCrossRefGoogle Scholar
  115. Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255PubMedCrossRefGoogle Scholar
  116. Kieber JJ (2002) Cytokinins. Arabidopsis Book 1:e0063PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441PubMedCrossRefGoogle Scholar
  118. Kim Y-M, Heinzel N, Giese J-O, Koeber J, Melzer M, Rutten T, Von Wirén N, Sonnewald U, Hajirezaei M-R (2013) A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant Cell Environ 36:1311–1327PubMedCrossRefGoogle Scholar
  119. Kim Y-K, Kim S, Shin Y, Hur Y-S, Kim W-Y, Lee M-S, Cheon C-I, Verma DPS (2014) Ribosomal protein S6, a target of rapamycin, is involved in the regulation of rRNA genes by possible epigenetic changes in Arabidopsis. J Biol Chem 289:3901–3912PubMedCrossRefPubMedCentralGoogle Scholar
  120. Kim G-D, Cho Y-H, Yoo S-D (2017) Phytohormone ethylene-responsive Arabidopsis organ growth under light is in the fine regulation of photosystem II deficiency-inducible AKIN10 expression. Sci Rep 7:2767PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 109:11217–11221PubMedPubMedCentralCrossRefGoogle Scholar
  122. Klarzynski O, Plesse B, Joubert J-M, Yvin J-C, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kliebenstein DJ (2016) False idolatry of the mythical growth versus immunity tradeoff in molecular systems plant pathology. Physiol Mol Plant Pathol 95:55–59CrossRefGoogle Scholar
  124. Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547PubMedCrossRefPubMedCentralGoogle Scholar
  125. Kong D, Hao Y, Cui H (2016) The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Mol Plant 9:261–270PubMedCrossRefPubMedCentralGoogle Scholar
  126. Kunz S, Gardeström P, Pesquet E, Kleczkowski LA (2015) Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis. Front Plant Sci 6:525PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kushwah S, Laxmi A (2014) The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ 37:235–253PubMedCrossRefPubMedCentralGoogle Scholar
  128. Kushwah S, Jones AM, Laxmi A (2011) Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol 156:1851–1866PubMedPubMedCentralCrossRefGoogle Scholar
  129. Laxmi A, Paul LK, Peters JL, Khurana JP (2004) Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Mol Biol 56:185–201PubMedCrossRefPubMedCentralGoogle Scholar
  130. Laxmi A, Paul LK, Raychaudhuri A, Peters JL, Khurana JP (2006) Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol Biol 62:409–425PubMedCrossRefPubMedCentralGoogle Scholar
  131. Lehman A, Black R, Ecker JR (1996) HOOKLESS1 an ethylene response gene, is required for differential cell elongation in the arabidopsis hypocotyl. Cell 85:183–194PubMedCrossRefGoogle Scholar
  132. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinsteroid signal transduction. Cell 90:929–938PubMedCrossRefGoogle Scholar
  133. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222PubMedCrossRefPubMedCentralGoogle Scholar
  134. Li P, Zhou H, Shi X, Yu B, Zhou Y, Chen S, Wang Y, Peng Y, Meyer RC, Smeekens SC, Teng S (2014a) The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genet 10:1–10Google Scholar
  135. Li Y, Van den Ende W, Rolland F (2014b) Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Mol Plant 7:570–572PubMedCrossRefPubMedCentralGoogle Scholar
  136. Li S, Chen L, Li Y, Yao R, Wang F, Yang M, Gu M, Nan F, Xie D, Yan J (2016) Effect of GR24 stereoisomers on plant development in Arabidopsis. Mol Plant 9:1432–1435PubMedCrossRefPubMedCentralGoogle Scholar
  137. Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y (2017) Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci U S A 114:2765–2770PubMedPubMedCentralCrossRefGoogle Scholar
  138. Liang Y, Ward S, Li P, Bennett T, Leyser O (2016) SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28:1581–1601PubMedPubMedCentralGoogle Scholar
  139. Lin P-C, Pomeranz MC, Jikumaru Y, Kang SG, Hah C, Fujioka S, Kamiya Y, Jang J-C (2011) The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. Plant J 65:253–268PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lin XY, Ye YQ, Fan SK, Jin CW, Zheng SJ (2016) Increased sucrose accumulation regulates iron-deficiency responses by promoting auxin signaling in Arabidopsis plants. Plant Physiol 170:907–920PubMedCrossRefPubMedCentralGoogle Scholar
  141. Lisso J, Altmann T, Müssig C (2006) Metabolic changes in fruits of the tomato dx mutant. Phytochemistry 67:2232–2238PubMedCrossRefGoogle Scholar
  142. Liu Y, Bassham DC (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5:e11883PubMedPubMedCentralCrossRefGoogle Scholar
  143. Liu XJ, An XH, Liu X, Hu DG, Wang XF, You CX, Hao YJ (2017) MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. J Exp Bot 68:2977–2990PubMedPubMedCentralCrossRefGoogle Scholar
  144. Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016PubMedCrossRefGoogle Scholar
  145. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318PubMedCrossRefGoogle Scholar
  146. Mason HS, DeWald DB, Creelman RA, Mullet JE (1992) Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol 98:859–867PubMedPubMedCentralCrossRefGoogle Scholar
  147. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci U S A 111:6092–6097PubMedPubMedCentralCrossRefGoogle Scholar
  148. Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57(8):1795–1807PubMedCrossRefGoogle Scholar
  149. McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473PubMedCrossRefGoogle Scholar
  150. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99:6422–6427PubMedPubMedCentralCrossRefGoogle Scholar
  151. Meteignier L-V, El Oirdi M, Cohen M, Barff T, Matteau D, Lucier J-F, Rodrigue S, Jacques P-E, Yoshioka K, Moffett P (2017) Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. J Exp Bot 68:2333–2344PubMedCrossRefGoogle Scholar
  152. Miao H, Wei J, Zhao Y, Yan H, Sun B, Huang J, Wang Q (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp Bot 64:1097–1109PubMedPubMedCentralCrossRefGoogle Scholar
  153. Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970) Brassins – a new family of plant hormones from rape pollen. Nature 225:1065–1066PubMedCrossRefGoogle Scholar
  155. Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336PubMedCrossRefGoogle Scholar
  156. Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martin-Magniette M-L, Taconnat L, Renou J-P, Robaglia C, Meyer C (2012) Mutations in the Arabidopsis homolog of LST8/G L, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24:463–481PubMedPubMedCentralCrossRefGoogle Scholar
  157. Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed alpha-amylase gene (RAmy1 A) promoter in rice embryos. FEBS Lett 423:6181–6185CrossRefGoogle Scholar
  158. Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM (2009) Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway. Plant Cell 21:3591–3609PubMedPubMedCentralCrossRefGoogle Scholar
  159. Mudgil Y, Karve A, Teixeira PJPL, Jiang K, Tunc-Ozdemir M, Jones AM (2016) Photosynthate regulation of the root system architecture mediated by the heterotrimeric G protein complex in Arabidopsis. Front Plant Sci 7:1–13CrossRefGoogle Scholar
  160. Murcia G, Pontin M, Piccoli P (2017) Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening. Plant Growth Regul 84(2):275–283CrossRefGoogle Scholar
  161. Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613PubMedCrossRefGoogle Scholar
  162. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212PubMedCrossRefGoogle Scholar
  163. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:8897–8902PubMedPubMedCentralCrossRefGoogle Scholar
  164. Németh K, Salchert K, Putnoky P, Bhalerao R, Koncz-Kálmán Z, Stankovic-Stangeland B, Bakó L, Mathur J, Okrész L, Stabel S, Geigenberger P, Stitt M, Rédei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12:3059–3073PubMedPubMedCentralCrossRefGoogle Scholar
  165. Nietzsche M, Schießl I, Börnke F (2014) The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci 5:54PubMedPubMedCentralCrossRefGoogle Scholar
  166. Nietzsche M, Landgraf R, Tohge T, Börnke F (2016) A protein–protein interaction network linking the energy-sensor kinase SnRK1 to multiple signaling pathways in Arabidopsis thaliana. Curr Plant Biol 5:36–44CrossRefGoogle Scholar
  167. Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501PubMedPubMedCentralCrossRefGoogle Scholar
  168. Nukarinen E, Nägele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Börnke F, Hanson J, Teige M, Baena-Gonzalez E, Dröge-Laser W, Weckwerth W (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 6:31697PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ohto MA, Hayashi S, Sawa S, Hashimoto-Ohta A, Nakamura K (2006) Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves. Plant Cell Physiol 47:1603–1611PubMedCrossRefPubMedCentralGoogle Scholar
  170. Pancheva TV, Popova LP (1998) Effect of salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 152:381–386CrossRefGoogle Scholar
  171. Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63CrossRefGoogle Scholar
  172. Park J, Oh DH, Dassanayake M, Nguyen KT, Ogas J, Choi G, Sun TP (2017) Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions. Plant Physiol 173:1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  173. Perata P, Matsukura C, Vernieri P, Yamaguchi J (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:612197–612208CrossRefGoogle Scholar
  174. Peviani A, Lastdrager J, Hanson J, Snel B (2016) The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts. Sci Rep 6:30444PubMedPubMedCentralCrossRefGoogle Scholar
  175. Poór P, Gémes K, Horváth F, Szepesi Á, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568PubMedCrossRefPubMedCentralGoogle Scholar
  177. Pu Y, Luo X, Bassham DC (2017) TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. Front Plant Sci 8:1204PubMedPubMedCentralCrossRefGoogle Scholar
  178. Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282PubMedCrossRefPubMedCentralGoogle Scholar
  179. Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S, Gourrierec JL, Sakr S (2012) Insight into the role of sugars in bud burst under light in the rose. Plant Cell Physiol 53:1068–1082PubMedCrossRefPubMedCentralGoogle Scholar
  180. Rabot A, Portemer V, Péron T, Mortreau E, Leduc N, Hamama L, Coutos-Thévenot P, Atanassova R, Sakr S, Gourrierec JL (2014) Interplay of sugar, light and gibberelling in expression of Rosa hybrida vacuolar invertase 1 regulation. Plant Cell Physiol 55:1734–1748PubMedCrossRefPubMedCentralGoogle Scholar
  181. Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J (2009) Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiol 150:1356–1367PubMedPubMedCentralCrossRefGoogle Scholar
  182. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923PubMedPubMedCentralCrossRefGoogle Scholar
  183. Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis Book 6:e0117PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F (2013) The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. Plant J 75:11–25PubMedPubMedCentralCrossRefGoogle Scholar
  185. Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463CrossRefGoogle Scholar
  186. Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC (2011) β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23:1391–1403PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ren M, Qiu S, Venglat P, Xiang D, Feng L, Selvaraj G, Datla R (2011) Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155:1367–1382PubMedPubMedCentralCrossRefGoogle Scholar
  188. Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, Logan D, Mattoo A, Selvaraj G, Datla R (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874PubMedPubMedCentralCrossRefGoogle Scholar
  189. Riou-Khamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521PubMedPubMedCentralCrossRefGoogle Scholar
  190. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338PubMedCrossRefPubMedCentralGoogle Scholar
  191. Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R (2013) ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25:3871–3884PubMedPubMedCentralCrossRefGoogle Scholar
  192. Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524PubMedCrossRefPubMedCentralGoogle Scholar
  193. Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317PubMedCrossRefPubMedCentralGoogle Scholar
  194. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709PubMedCrossRefPubMedCentralGoogle Scholar
  195. Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263PubMedCrossRefPubMedCentralGoogle Scholar
  196. Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W (2016) An evolutionary perspective of AMPK–TOR signaling in the three domains of life. J Exp Bot 67:3897–3907PubMedCrossRefPubMedCentralGoogle Scholar
  197. Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6:950PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sairanen I, Novak O, Pencik A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907–4916PubMedPubMedCentralCrossRefGoogle Scholar
  199. Salchert K, Bhalerao R, Koncz-Kalman Z, Koncz C (1998) Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philos Trans R Soc Lond B Biol Sci 353:1517–1520PubMedPubMedCentralCrossRefGoogle Scholar
  200. Salem MA, Li Y, Wiszniewski A, Giavalisco P (2017) Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J 92:525–545PubMedCrossRefPubMedCentralGoogle Scholar
  201. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  202. Sarbassov DD, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) RICTOR, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302PubMedCrossRefPubMedCentralGoogle Scholar
  203. Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63PubMedPubMedCentralCrossRefGoogle Scholar
  204. Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, Keller M, Ryabova LA (2011) Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J 30:1343–1356PubMedPubMedCentralCrossRefGoogle Scholar
  205. Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, Ryabova LA (2013) TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32:1087–1102PubMedPubMedCentralCrossRefGoogle Scholar
  206. Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, Chicher J, Hammann P, Ryabova LA (2017) GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J 36:886–903PubMedPubMedCentralCrossRefGoogle Scholar
  207. Schröder F, Lisso J, Müssig C (2011) EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. Plant Physiol 156:1620–1630PubMedPubMedCentralCrossRefGoogle Scholar
  208. Seo PJ, Ryu J, Kang SK, Park C-M (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65:418–429PubMedCrossRefPubMedCentralGoogle Scholar
  209. She J, Han Z, Zhou B, Chai J (2013) Structural basis for differential recognition of brassinolide by its receptors. Protein Cell 4:475–482PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedPubMedCentralCrossRefGoogle Scholar
  211. Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233CrossRefGoogle Scholar
  212. Singh M, Gupta A, Laxmi A (2014a) Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signal Behav 9:e29219PubMedPubMedCentralCrossRefGoogle Scholar
  213. Singh M, Gupta A, Laxmi A (2014b) Glucose control of root growth direction in Arabidopsis thaliana. J Exp Bot 65:2981–2993PubMedPubMedCentralCrossRefGoogle Scholar
  214. Singh M, Gupta A, Singh D, Khurana JP, Laxmi A (2017) Arabidopsis RSS1 mediates cross-talk between glucose and light signaling during hypocotyl elongation growth. Sci Rep 7:16101PubMedPubMedCentralCrossRefGoogle Scholar
  215. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645PubMedPubMedCentralCrossRefGoogle Scholar
  216. Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448CrossRefGoogle Scholar
  217. Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759PubMedPubMedCentralCrossRefGoogle Scholar
  218. Song Y, Zhao G, Zhang X, Li L, Xiong F, Zhuo F, Zhang C, Yang Z, Datla R, Ren M, Li F (2017) The crosstalk between target of rapamycin (TOR) and jasmonic acid (JA) signaling existing in Arabidopsis and cotton. Sci Rep 7:45830PubMedPubMedCentralCrossRefGoogle Scholar
  219. Sonnewald S, Priller JPR, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012) Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One 7:e51763PubMedPubMedCentralCrossRefGoogle Scholar
  220. Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474PubMedPubMedCentralCrossRefGoogle Scholar
  221. Soto-Burgos J, Bassham DC (2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS One 12:e0182591PubMedPubMedCentralCrossRefGoogle Scholar
  222. Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159PubMedPubMedCentralCrossRefGoogle Scholar
  223. Srivastava MK, Dwivedi UN (2000) Delayed ripening of banana fruit by salicylic acid. Plant Sci 158:87–96PubMedCrossRefPubMedCentralGoogle Scholar
  224. Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141PubMedPubMedCentralGoogle Scholar
  225. Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94PubMedCrossRefPubMedCentralGoogle Scholar
  226. Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777PubMedPubMedCentralCrossRefGoogle Scholar
  227. Swartzberg D, Hanael R, Granot D (2011) Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination. Plant Biol 13:439–444PubMedCrossRefPubMedCentralGoogle Scholar
  228. Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182PubMedCrossRefPubMedCentralGoogle Scholar
  229. Thelander M, Olsson T, Ronne H (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23:1900–1910PubMedPubMedCentralCrossRefGoogle Scholar
  230. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefPubMedCentralGoogle Scholar
  231. Tholen D, Voesenek LACJ, Poorter H (2004) Ethylene insensitivity does not increase leaf area or relative growth rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrida. Plant Physiol 134:1803–1812PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tholen D, Pons TL, Voesenek LA, Poorter H (2008) The role of ethylene perception in the control of photosynthesis. Plant Signal Behav 3:108–109PubMedPubMedCentralCrossRefGoogle Scholar
  233. Tognetti JA, Pontis HG, Martínez-Noël GMA (2013) Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav 8:e23316PubMedPubMedCentralCrossRefGoogle Scholar
  234. Tsai AY-L, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138PubMedPubMedCentralCrossRefGoogle Scholar
  236. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698PubMedCrossRefGoogle Scholar
  237. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  238. Urano D, Phan N, Jones JC, Yang J, Huang J, Grigston J, Philip Taylor J, Jones AM (2012) Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat Cell Biol 14:1079–1088PubMedPubMedCentralCrossRefGoogle Scholar
  239. Urano D, Chen J-G, Botella JR, Jones AM (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3:120186PubMedPubMedCentralCrossRefGoogle Scholar
  240. Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250CrossRefGoogle Scholar
  241. Vandenbussche F, Suslov D, De Grauwe L, Leroux O, Vissenberg K, Van der Straeten D (2011) The role of brassinosteroids in shoot gravitropism. Plant Physiol 156:1331–1336PubMedPubMedCentralCrossRefGoogle Scholar
  242. Vicentini R, Felix Jde M, Dornelas MC, Menossi M (2009) Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content. Plant Cell Rep 28:481–491PubMedCrossRefPubMedCentralGoogle Scholar
  243. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefPubMedCentralGoogle Scholar
  244. von Arnim AG, Jia Q, Vaughn JN (2014) Regulation of plant translation by upstream open reading frames. Plant Sci 214:1–12CrossRefGoogle Scholar
  245. Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707PubMedCrossRefPubMedCentralGoogle Scholar
  246. Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040PubMedCrossRefPubMedCentralGoogle Scholar
  247. Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang ZX, Ma H, Wang H (2011) Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell 21:825–834PubMedCrossRefPubMedCentralGoogle Scholar
  248. Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688PubMedCrossRefPubMedCentralGoogle Scholar
  249. Wang C, Liu Y, Li S-S, Han G-Z (2015) Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167:872–886PubMedPubMedCentralCrossRefGoogle Scholar
  250. Wang P, Zhao Y, Li Z, Hsu C-C, Liu X, Fu L, Hou Y-J, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK (2018) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69:100–112PubMedCrossRefPubMedCentralGoogle Scholar
  251. Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol 133:850–863PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058PubMedPubMedCentralCrossRefGoogle Scholar
  253. Weiste C, Pedrotti L, Selvanayagam J, Muralidhara P, Fröschel C, Novák O, Ljung K, Hanson J, Dröge-Laser W (2017) The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet 13:e1006607PubMedPubMedCentralCrossRefGoogle Scholar
  254. Wiese A, Elzinga N, Wobbes B, Smeekens S (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–1729PubMedPubMedCentralCrossRefGoogle Scholar
  255. Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319PubMedPubMedCentralCrossRefGoogle Scholar
  256. Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614PubMedCrossRefPubMedCentralGoogle Scholar
  257. Wingler A (2018) Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol 176:1075–1084PubMedCrossRefPubMedCentralGoogle Scholar
  258. Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145PubMedPubMedCentralCrossRefGoogle Scholar
  260. Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461PubMedCrossRefGoogle Scholar
  261. Xie Z, Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol 120:217–226PubMedPubMedCentralCrossRefGoogle Scholar
  262. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117PubMedCrossRefGoogle Scholar
  263. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186PubMedPubMedCentralCrossRefGoogle Scholar
  264. Xiong F, Zhang R, Meng Z, Deng K, Que Y, Zhuo F, Feng L, Guo S, Datla R, Ren M (2017) Brassinosteriod insensitive 2 (BIN2) acts as a downstream effector of the target of rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. New Phytol 213:233–249PubMedCrossRefGoogle Scholar
  265. Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483PubMedPubMedCentralCrossRefGoogle Scholar
  266. Yanagisawa S, Yoo S-D, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525PubMedCrossRefGoogle Scholar
  267. Yang L, Xu M, Koo Y, He J, Poethig RS (2013) Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife 2:e00260PubMedPubMedCentralCrossRefGoogle Scholar
  268. Yu S, Cao L, Zhou C-M, Zhang T-Q, Lian H, Sun Y, Wu J, Huang J, Wang G, Wang J-W (2013) Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife 2:e00269PubMedPubMedCentralCrossRefGoogle Scholar
  269. Yuan K, Wysocka-Diller J (2006) Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot 57:613359–613367CrossRefGoogle Scholar
  270. Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT (2014) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ 37:1338–1350PubMedCrossRefGoogle Scholar
  271. Zhang Y, He J (2015) Sugar-induced plant growth is dependent on brassinosteroids. Plant Signal Behav 10:e1082700PubMedPubMedCentralCrossRefGoogle Scholar
  272. Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhang D, Jing Y, Jiang Z, Lin R (2014) The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 26:2472–2485PubMedPubMedCentralCrossRefGoogle Scholar
  274. Zhang Z, Zhu J-Y, Roh J, Marchive C, Kim S-K, Meyer C, Sun Y, Wang W, Wang Z-Y (2016) TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Curr Biol 26:1854–1860PubMedPubMedCentralCrossRefGoogle Scholar
  275. Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X (2015) Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol 169:2288–2303PubMedPubMedCentralGoogle Scholar
  276. Zhou L, J-C J, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95:10294–10299PubMedPubMedCentralCrossRefGoogle Scholar
  277. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signaling. Nature 504:406–410PubMedPubMedCentralCrossRefGoogle Scholar
  278. Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signalling. Development 140:1615–1620PubMedPubMedCentralCrossRefGoogle Scholar
  279. Zwack PJ, Rashotte AM (2013) Cytokinin inhibition of leaf senescence. Plant Signal Behav 8:e24737PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muhammed Jamsheer K 
    • 1
    • 2
  • Sunita Jindal
    • 1
  • Mohan Sharma
    • 1
  • Manvi Sharma
    • 1
  • Dhriti Singh
    • 1
  • Archna Tiwari
    • 1
  • Harshita B. Saksena
    • 1
  • Bhuwaneshwar Mishra
    • 1
  • Sunita Kushwah
    • 1
    • 3
  • Zeeshan Z. Banday
    • 1
    • 4
  • Ashverya Laxmi
    • 1
    Email author
  1. 1.National Institute of Plant Genome ResearchNew DelhiIndia
  2. 2.Amity Food & Agriculture FoundationAmity UniversityNoidaIndia
  3. 3.Umeå Plant Science CentreUmeåSweden
  4. 4.Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoUSA

Personalised recommendations