Advertisement

Pathogenesis of Chronic Allograft Dysfunction Progress to Renal Fibrosis

  • Cheng Yang
  • Ruochen Qi
  • Bin YangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Kidney transplantation is a life-change measurement for the patients of end-stage renal disease (ESRD). However, the renal allograft cannot avoid initial acute kidney injury (AKI) and subsequent chronic allograft dysfunction (CAD), gradually develops fibrosis and eventually loses function. It is imperative to disclose the pathogenesis of AKI and CAD in order to facilitate interventions. We have studied the involvement of immunity, inflammation, and apoptosis in ischemia-reperfusion injury (IRI) and/or immunosuppressant induced AKI models, with associated chronic damage. Our research mainly focused on tubular epithelial cells (TECs) that are passive victims and also active participators in injury and mediate following repair or fibrosis. Targeting not only fibroblasts/myofibroblasts, but also TECs, might be a fundamental strategy to prevent and treat renal fibrosis. We have also evaluated the potential application of siRNA targeting caspase-3 and tissue protective erythropoietin derivatives, HBSP and CHBP, aiming to treat AKI and prevent CAD. Significant improvements have been obtained, but timely diagnosis and precise therapy of AKI and prevention of CAD progressing to ESRD are still very challenging. Modern technologies such as microarray and sequencing analysis have been used to identify biomarkers and potentially facilitate individual cell target treatment for transplant patients.

Keywords

Fibrosis Tubular epithelia cell Kidney Inflammation 

Notes

Acknowledgements

The studies cited in this chapter were supported by the Zhongshan Hospital of Fudan University; the Affiliated Hospital of Nantong University and the Medical School of Nantong University; and the University Hospitals of Leicester (UHL) and the University of Leicester. We also would like to acknowledge the support of various project grants such as the Kidney Care Appeal from UHL (to BY), the UK–China Fellowship for Excellence from the Department for Business Innovation and Skills (to BY), the National Natural Foundation of China (81400752 and 81770746 to CY and 81170689, 81570677 and 81873622 to BY), the National Key R&D Program of China (2018YFA0107502 to CY), the Medical and Health Talents Training Plan for the Excellent Youth of Shanghai Municipal (2018YQ50 to CY) and Shanghai Rising-Star Program (19QA1406300 to CY).

References

  1. Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925CrossRefGoogle Scholar
  2. Baisantry A, Bhayana S, Rong S, Ermeling E, Wrede C et al (2016) Autophagy induces prosenescent changes in proximal tubular S3 segments. J Am Soc Nephrol JASN 27:1609–1616CrossRefGoogle Scholar
  3. Brooks CR, Yeung MY, Brooks YS, Chen H, Ichimura T et al (2015) KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 34:2441–2464CrossRefGoogle Scholar
  4. Chevalier RL (2017) Evolutionary nephrology. Kidney Int Rep 2:302–317CrossRefGoogle Scholar
  5. Collino M, Thiemermann C, Cerami A, Brines M (2015) Flipping the molecular switch for innate protection and repair of tissues: long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol Ther 151:32–40CrossRefGoogle Scholar
  6. Dahan A, Brines M, Niesters M, Cerami A, van Velzen M (2016) Targeting the innate repair receptor to treat neuropathy. Pain Rep 1:e566CrossRefGoogle Scholar
  7. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737CrossRefGoogle Scholar
  8. di Paolo S, Teutonico A, Stallone G, Infante B, Schena A et al (2004) Cyclosporin exposure correlates with 1 year graft function and histological damage in renal transplanted patients. Nephrol Dial Transplant 19:2107–2112CrossRefGoogle Scholar
  9. Du C, Ren Y, Yao F, Duan J, Zhao H et al (2017) Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy. Int J Biochem Cell Biol 90:17–28CrossRefGoogle Scholar
  10. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B et al (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575CrossRefGoogle Scholar
  11. Ekberg H, Bernasconi C, Tedesco-Silva H, Vitko S, Hugo C et al (2009) Calcineurin inhibitor minimization in the symphony study: observational results 3 years after transplantation. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 9:1876–1885CrossRefGoogle Scholar
  12. Elliott MR, Koster KM, Murphy PS (2017) Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol 198:1387–1394CrossRefGoogle Scholar
  13. Gilboa D, Haim-Ohana Y, Deshet-Unger N, Ben-Califa N, Hiram-Bab S et al (2017) Erythropoietin enhances Kupffer cell number and activity in the challenged liver. Sci Rep 7:10379CrossRefGoogle Scholar
  14. Gobe GC, Bennett NC, West M, Colditz P, Brown L et al (2014) Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury. Am J Physiol Renal Physiol 306:F681–F692CrossRefGoogle Scholar
  15. Gorsuch WB, Chrysanthou E, Schwaeble WJ, Stahl GL (2012) The complement system in ischemia-reperfusion injuries. Immunobiology 217:1026–1033CrossRefGoogle Scholar
  16. Haylor JL, Harris KP, Nicholson ML, Waller HL, Huang Q et al (2011) Atorvastatin improving renal ischemia reperfusion injury via direct inhibition of active caspase-3 in rats. Exp Biol Med (Maywood) 236:755–763CrossRefGoogle Scholar
  17. Hu L, Yang C, Zhao T, Xu M, Tang Q et al (2012) Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 176:260–266CrossRefGoogle Scholar
  18. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R et al (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108:9226–9231CrossRefGoogle Scholar
  19. Ising C, Heneka MT (2018) Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis 9:120CrossRefGoogle Scholar
  20. Jia Y, Zheng Z, Guan M, Zhang Q, Li Y et al (2018) Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells. Exp Mol Med 50:56CrossRefGoogle Scholar
  21. Johnston JR, Brenner BM, Hebert SC (1987) Uninephrectomy and dietary protein affect fluid absorption in rabbit proximal straight tubules. Am J Physiol 253:F222–F233PubMedGoogle Scholar
  22. Kang HM, Ahn SH, Choi P, Ko YA, Han SH et al (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46CrossRefGoogle Scholar
  23. Krauskopf A, Lhote P, Petermann O, Ruegg UT, Buetler TM (2005) Cyclosporin A generates superoxide in smooth muscle cells. Free Radic Res 39:913–919CrossRefGoogle Scholar
  24. Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Investig 121:468–474CrossRefGoogle Scholar
  25. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD (2014) Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA 111:1527–1532CrossRefGoogle Scholar
  26. Lee TS, Lu KY, Yu YB, Lee HT, Tsai FC (2015) β common receptor mediates erythropoietin-conferred protection on OxLDL-induced lipid accumulation and inflammation in macrophages. Mediators Inflamm 2015:439759PubMedPubMedCentralGoogle Scholar
  27. Li H, Peng X, Wang Y, Cao S, Xiong L et al (2016) Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12:1472–1486CrossRefGoogle Scholar
  28. Lifshitz L, Tabak G, Gassmann M, Mittelman M, Neumann D (2010) Macrophages as novel target cells for erythropoietin. Haematologica 95:1823–1831CrossRefGoogle Scholar
  29. Liu A, Wu J, Yang C, Wu Y, Zhang Y et al (2018a) TRPM7 in CHBP-induced renoprotection upon ischemia reperfusion-related injury. Sci Rep 8:5510CrossRefGoogle Scholar
  30. Liu BC, Tang TT, Lv LL, Lan HY (2018b) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579CrossRefGoogle Scholar
  31. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM et al (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:976–998CrossRefGoogle Scholar
  32. Luo B, Jiang M, Yang X, Zhang Z, Xiong J et al (2013) Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis. Biochem Biophys Acta 1832:1260–1270PubMedGoogle Scholar
  33. Luo B, Gan W, Liu Z, Shen Z, Wang J et al (2016a) Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44:287–302CrossRefGoogle Scholar
  34. Luo B, Wang J, Liu Z, Shen Z, Shi R et al (2016b) Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat Commun 7:12177CrossRefGoogle Scholar
  35. Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF et al (2018) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol JASN 29:919–935CrossRefGoogle Scholar
  36. Menon MC, Murphy B, Heeger PS (2017) Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol 28:735–747CrossRefGoogle Scholar
  37. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D et al (2016) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274CrossRefGoogle Scholar
  38. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD et al (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333CrossRefGoogle Scholar
  39. Nath KA, Croatt AJ, Hostetter TH (1990) Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol 258:F1354–F1362PubMedGoogle Scholar
  40. Nephrology Dialysis Transplantation, Volume 33, Issue suppl_1, May 2018, Page i103, https://doi.org/10.1093/ndt/gfy104.FP214CrossRefGoogle Scholar
  41. Nicholson ML, McCulloch TA, Harper SJ, Wheatley TJ, Edwards CM et al (1996) Early measurement of interstitial fibrosis predicts long-term renal function and graft survival in renal transplantation. Br J Surg 83:1082–1085CrossRefGoogle Scholar
  42. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180CrossRefGoogle Scholar
  43. Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol 190:3839–3847CrossRefGoogle Scholar
  44. Saqib N, Duling L, Krier K, Howdieshell TR (2009) Temporal and spatial expression of erythropoietin, erythropoietin receptor, and common beta receptor in wound fluid and granulation tissue. Wounds 21:164–171PubMedGoogle Scholar
  45. Sato Y, Yanagita M (2013) Renal anemia: from incurable to curable. Am J Physiol Renal Physiol 305:F1239–F1248CrossRefGoogle Scholar
  46. Sato Y, Yanagita M (2017) Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm Regen 37:17CrossRefGoogle Scholar
  47. Sis B, Einecke G, Chang J, Hidalgo LG, Mengel M et al (2010) Cluster analysis of lesions in nonselected kidney transplant biopsies: microcirculation changes, tubulointerstitial inflammation and scarring. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 10:421–430CrossRefGoogle Scholar
  48. Solez K, Colvin RB, Racusen LC, Sis B, Halloran PF et al (2007) Banff ‘05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant 7:518–526CrossRefGoogle Scholar
  49. Solez K, Colvin RB, Racusen LC, Haas M, Sis B et al (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 8:753–760CrossRefGoogle Scholar
  50. Takahashi A, Takabatake Y, Kimura T, Maejima I, Namba T et al (2017) Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes 66:1359–1372CrossRefGoogle Scholar
  51. Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM (2003) Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol 170:1517–1523CrossRefGoogle Scholar
  52. Thurman JM, Royer PA, Ljubanovic D, Dursun B, Lenderink AM et al (2006) Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J Am Soc Nephrol 17:707–715CrossRefGoogle Scholar
  53. Ueba H, Shiomi M, Brines M, Yamin M, Kobayashi T et al (2013) Suppression of coronary atherosclerosis by helix B surface Peptide, a nonerythropoietic, tissue-protective compound derived from erythropoietin. Mol Med 19:195–202CrossRefGoogle Scholar
  54. Vanhove T, Goldschmeding R, Kuypers D (2017) Kidney fibrosis: origins and interventions. Transplantation 101:713–726CrossRefGoogle Scholar
  55. Varga ZV, Erdelyi K, Paloczi J, Cinar R, Zsengeller ZK et al (2018) Disruption of renal arginine metabolism promotes kidney injury in hepatorenal syndrome. Hepatology 68(4):1519–1533CrossRefGoogle Scholar
  56. Viau A, Bienaime F, Lukas K, Todkar AP, Knoll M et al (2018) Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J 37(15):e98615CrossRefGoogle Scholar
  57. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B et al (2005) Costimulation blockade with belatacept in renal transplantation. N Engl J Med 353:770–781CrossRefGoogle Scholar
  58. Vitalone MJ, Ganguly B, Hsieh S, Latek R, Kulbokas EJ et al (2014) Transcriptional profiling of belatacept and calcineurin inhibitor therapy in renal allograft recipients. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 14:1912–1921CrossRefGoogle Scholar
  59. Wang S, Zhang C, Hu L, Yang C (2016) Necroptosis in acute kidney injury: a shedding light. Cell Death Dis 7:e2125CrossRefGoogle Scholar
  60. Wu Y, Zhang J, Liu F, Yang C, Zhang Y et al (2013) Protective effects of HBSP on ischemia reperfusion and cyclosporine a induced renal injury. Clin Dev Immunol 2013:758159PubMedPubMedCentralGoogle Scholar
  61. Wu Q, Wang X, Nepovimova E, Wang Y, Yang H et al (2018) Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings. Food Chem Toxicol 118:889–907CrossRefGoogle Scholar
  62. Yang B, El Nahas AM, Thomas GL, Haylor JL, Watson PF et al (2001) Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int 60:1765–1776CrossRefGoogle Scholar
  63. Yang B, Johnson TS, Haylor JL, Wagner B, Watson PF et al (2003) Effects of caspase inhibition on the progression of experimental glomerulonephritis. Kidney Int 63:2050–2064CrossRefGoogle Scholar
  64. Yang B, El Nahas AM, Fisher M, Wagner B, Huang L et al (2004) Inhibitors directed towards Caspase-1 and -3 are less effective than pan caspase inhibition in preventing renal proximal tubular cell apoptosis. Nephron Exp Nephrol 96:E39–E51CrossRefGoogle Scholar
  65. Yang B, Jain S, Pawluczyk IZ, Imtiaz S, Bowley L et al (2005) Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int 68:2050–2067CrossRefGoogle Scholar
  66. Yang B, Harris KP, Jain S, Nicholson ML (2007) Caspase-7, Fas and FasL in long-term renal ischaemia/reperfusion and immunosuppressive injuries in rats. Am J Nephrol 27:397–408CrossRefGoogle Scholar
  67. Yang B, Hosgood SA, Harper SJ, Nicholson ML (2010) Leucocyte depletion improves renal function in porcine kidney hemoreperfusion through reduction of myeloperoxidase + cells, caspase-3, IL-1beta, and tubular apoptosis. J Surg Res 164:e315–e324CrossRefGoogle Scholar
  68. Yang B, Elias JE, Bloxham M, Nicholson ML (2011a) Synthetic small interfering RNA down-regulates caspase-3 and affects apoptosis, IL-1 beta, and viability of porcine proximal tubular cells. J Cell Biochem 112:1337–1347CrossRefGoogle Scholar
  69. Yang B, Hosgood SA, Bagul A, Waller HL, Nicholson ML (2011b) Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1beta in isolated hemoperfused kidneys. Eur J Pharmacol 660:420–430CrossRefGoogle Scholar
  70. Yang B, Hosgood SA, Nicholson ML (2011c) Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation 91:501–507CrossRefGoogle Scholar
  71. Yang B, Hosgood SA, Da Z, Harper SJ, Waller HL et al (2012) Biomarkers assessing warm ischemic injury using an isolated porcine kidney hemoreperfusion model. Exp Biol Med 237:1462–1473CrossRefGoogle Scholar
  72. Yang C, Jia Y, Zhao T, Xue Y, Zhao Z et al (2013a) Naked caspase 3 small interfering RNA is effective in cold preservation but not in autotransplantation of porcine kidneys. J Surg Res 181:342–354CrossRefGoogle Scholar
  73. Yang C, Li L, Xue Y, Zhao Z, Zhao T et al (2013b) Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J Transl Med 11:210CrossRefGoogle Scholar
  74. Yang C, Zhao T, Lin M, Zhao Z, Hu L et al (2013c) Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model. Exp Biol Med 238:111–119CrossRefGoogle Scholar
  75. Yang C, Zhao T, Zhao Z, Jia Y, Li L et al (2014) Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther J Am Soc Gene Ther 22:1817–1828CrossRefGoogle Scholar
  76. Yang C, Hosgood SA, Meeta P, Long Y, Zhu T et al (2015a) Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant Direct 1:e6CrossRefGoogle Scholar
  77. Yang C, Zhang C, Zhao Z, Zhu T, Yang B (2015b) Fighting against kidney diseases with small interfering RNA: opportunities and challenges. J Transl Med 13:39CrossRefGoogle Scholar
  78. Yang B, Lan S, Dieude M, Sabo-Vatasescu JP, Karakeussian-Rimbaud A et al (2018) Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J Am Soc Nephrol 29:1900–1916CrossRefGoogle Scholar
  79. Zhang Y, Chen W, Wu Y, Yang B (2017) Renoprotection and mechanisms of erythropoietin and its derivatives helix B surface peptide in kidney injuries. Curr Protein Pept Sci 18:1183–1190PubMedGoogle Scholar
  80. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740CrossRefGoogle Scholar
  81. Zwaini Z, Dai H, Stover C, Yang B (2017) Role of complement properdin in renal ischemia-reperfusion injury. Curr Gene Ther 17:411–423CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Urology, Zhongshan HospitalZhangjiang Technology Institute, Fudan UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Organ TransplantationShanghaiChina
  3. 3.Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Renal GroupBasic Medical Research Centre, Medical College of Nantong UniversityNantongChina
  4. 4.Department of Cardiovascular SciencesUniversity of Leicester, University Hospitals of LeicesterLeicesterUK

Personalised recommendations