Advertisement

New Therapies for the Treatment of Renal Fibrosis

  • Feng Liu
  • Shougang ZhuangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Renal fibrosis is the common pathway for progression of chronic kidney disease (CKD) to end stage of renal disease. It is now widely accepted that the degree of renal fibrosis correlates with kidney function and CKD stages. The key cellular basis of renal fibrosis includes activation of myofibroblasts, excessive production of extracellular matrix components, and infiltration of inflammatory cells. Many cellular mechanisms responsible for renal fibrosis have been identified, and some antifibrotic agents show a greater promise in slowing down and even reversing fibrosis in animal models; however, translating basic findings into effective antifibrotic therapies in human has been limited. In this chapter, we will discuss the effects and mechanisms of some novel antifibrotic agents in both preclinical studies and clinical trials.

Keywords

Renal fibrosis Mechanism Anti-fibrosis treatment Clinical trial 

References

  1. Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T, Li D, Neff TB, Urquilla PR, Sewell KL (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol: CJASN 5:1420–1428PubMedCrossRefGoogle Scholar
  2. Al-Lamki RS, Mayadas TN (2015) TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 87:281–296CrossRefGoogle Scholar
  3. Al-Lamki RS, Wang J, Vandenabeele P, Bradley JA, Thiru S, Luo D, Min W, Pober JS, Bradley JR (2005) TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J: Off Publ Fed Am Soc Exp Biol 19:1637–1645CrossRefGoogle Scholar
  4. Anders HJ, Vielhauer V, Schlondorff D (2003) Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 63:401–415PubMedCrossRefGoogle Scholar
  5. Anders HJ, Belemezova E, Eis V, Segerer S, Vielhauer V, Perez de Lema G, Kretzler M, Cohen CD, Frink M, Horuk R, Hudkins KL, Alpers CE, Mampaso F, Schlondorff D (2004) Late onset of treatment with a chemokine receptor CCR4 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J Am Soc Nephrol: JASN 15:1504–1513PubMedCrossRefGoogle Scholar
  6. Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, Stasiv Y, Zawadzki R, Berman L, Bushinsky DA (2015) Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA 314:151–161PubMedCrossRefGoogle Scholar
  7. Barton M (2008) Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol 4:490–501PubMedCrossRefGoogle Scholar
  8. Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Rastaldi MP, Perin PC, Gruden G (2010) Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59:1046–1054PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S, Corbelli A, Bruno G, Rastaldi MP, Aveta T, Hirsch E, Di Marzo V, Gruden G (2014) Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int 86:979–990PubMedCrossRefGoogle Scholar
  11. Barutta F, Grimaldi S, Gambino R, Vemuri K, Makriyannis A, Annaratone L, di Marzo V, Bruno G, Gruden G (2017) Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy. Nephrol Dialysis Transplant: Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 32:1655–1665CrossRefGoogle Scholar
  12. Benigni A, Zoja C, Corna D, Orisio S, Longaretti L, Bertani T, Remuzzi G (1993) A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int 44:440–444PubMedCrossRefGoogle Scholar
  13. Benigni A, Corna D, Maffi R, Benedetti G, Zoja C, Remuzzi G (1998) Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy. Kidney Int 54:353–359PubMedCrossRefGoogle Scholar
  14. Bertocchio JP, Warnock DG, Jaisser F (2011) Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int 79:1051–1060PubMedCrossRefGoogle Scholar
  15. Boffa JJ, Tharaux PL, Dussaule JC and Chatziantoniou C (2001) Regression of renal vascular fibrosis by endothelin receptor antagonism. Hypertension (Dallas, Tex: 1979) 37:490–496Google Scholar
  16. Bolignano D, Palmer SC, Navaneethan SD and Strippoli GF (2014) Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane database Syst Rev Cd007004Google Scholar
  17. Borza CM, Su Y, Tran TL, Yu L, Steyns N, Temple KJ, Skwark MJ, Meiler J, Lindsley CW, Hicks BR, Leitinger B, Zent R, Pozzi A (2017) Discoidin domain receptor 1 kinase activity is required for regulating collagen IV synthesis. Matrix Biol: J Int Soc Matrix Biol 57–58:258–271CrossRefGoogle Scholar
  18. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New Engl J Med 345:861–869PubMedCrossRefGoogle Scholar
  19. Breyer MD, Susztak K (2016) The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discovery 15:568–588PubMedCrossRefGoogle Scholar
  20. Campbell D, Weir MR (2015) Defining, treating, and understanding chronic kidney disease—a complex disorder. J Clin Hypertens (Greenwich, Conn) 17:514–527CrossRefGoogle Scholar
  21. Castelino FV, Seiders J, Bain G, Brooks SF, King CD, Swaney JS, Lorrain DS, Chun J, Luster AD, Tager AM (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum 63:1405–1415PubMedPubMedCentralCrossRefGoogle Scholar
  22. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. New Engl J Med 354:610–621PubMedCrossRefGoogle Scholar
  23. Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, Threadgill DW, Neilson EG, Harris RC (2012) EGFR signaling promotes TGFbeta-dependent renal fibrosis. J Am Soc Nephrol: JASN 23:215–224PubMedCrossRefGoogle Scholar
  24. Chen PM, Lai TS, Chen PY, Lai CF, Wu V, Chiang WC, Chen YM, Wu KD and Tsai TJ (2014) Renoprotective effect of combining pentoxifylline with angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in advanced chronic kidney disease. J Formos Med Assoc = Taiwan yi zhi 113:219–226PubMedCrossRefGoogle Scholar
  25. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597PubMedCrossRefGoogle Scholar
  26. Chin MP, Bakris GL, Block GA, Chertow GM, Goldsberry A, Inker LA, Heerspink HJL, O’Grady M, Pergola PE, Wanner C, Warnock DG, Meyer CJ (2018) Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am J Nephrol 47:40–47PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cho ME, Kopp JB (2010) Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Invest Drugs 19:275–283CrossRefGoogle Scholar
  28. Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB (2007) Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol: CJASN 2:906–913PubMedCrossRefGoogle Scholar
  29. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. New Engl J Med 369:2492–2503PubMedCrossRefGoogle Scholar
  30. Denby L, Ramdas V, Lu R, Conway BR, Grant JS, Dickinson B, Aurora AB, McClure JD, Kipgen D, Delles C, van Rooij E, Baker AH (2014) MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol: JASN 25:65–80PubMedCrossRefGoogle Scholar
  31. Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM (2016) Galectin-3 in renal pathology: more than just an innocent bystander. Am J Nephrol 43:305–317PubMedCrossRefGoogle Scholar
  32. Dhaun N, Goddard J, Webb DJ (2006) The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol: JASN 17:943–955PubMedCrossRefGoogle Scholar
  33. Drechsler C, Delgado G, Wanner C, Blouin K, Pilz S, Tomaschitz A, Kleber ME, Dressel A, Willmes C, Krane V, Kramer BK, Marz W, Ritz E, van Gilst WH, van der Harst P, de Boer RA (2015) Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D studies. J Am Soc Nephrol: JASN 26:2213–2221PubMedCrossRefGoogle Scholar
  34. Egido J, Rojas-Rivera J, Mas S, Ruiz-Ortega M, Sanz AB, Gonzalez Parra E, Gomez-Guerrero C (2017) Atrasentan for the treatment of diabetic nephropathy. Expert Opin Invest Drugs 26:741–750CrossRefGoogle Scholar
  35. Fedorova LV, Sodhi K, Gatto-Weis C, Puri N, Hinds TD Jr, Shapiro JI, Malhotra D (2013) Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PLoS ONE 8:e64436PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fernandes Bertocchi AP, Campanhole G, Wang PH, Goncalves GM, Damiao MJ, Cenedeze MA, Beraldo FC, de Paula Antunes Teixeira V, Dos Reis MA, Mazzali M, Pacheco-Silva A, Camara NO (2008) A role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transplant Int: Off J Eur Soc Organ Transplant 21:999–1007PubMedCrossRefGoogle Scholar
  37. Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule JC (2006) Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol: JASN 17:3374–3381PubMedCrossRefGoogle Scholar
  38. Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol: JASN 19:12–23PubMedCrossRefGoogle Scholar
  39. Francois H, Chatziantoniou C (2018) Renal fibrosis: recent translational aspects. Matrix Biol: J Int Soc Matrix Biol 68–69:318–332CrossRefGoogle Scholar
  40. Francois H, Lecru L (2018) The Role of cannabinoid receptors in renal diseases. Curr Med Chem 25:793–801PubMedCrossRefGoogle Scholar
  41. Frenay AR, Yu L, van der Velde AR, Vreeswijk-Baudoin I, Lopez-Andres N, van Goor H, Sillje HH, Ruifrok WP, de Boer RA (2015) Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am J Physiol Renal Physiol 308:F500–509PubMedCrossRefGoogle Scholar
  42. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O’Connor T, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. New Engl J Med 369:1892–1903PubMedCrossRefGoogle Scholar
  43. Fukuda K, Yanagida T, Okuda S, Tamaki K, Ando T, Fujishima M (1996) Role of endothelin as a mitogen in experimental glomerulonephritis in rats. Kidney Int 49:1320–1329PubMedCrossRefGoogle Scholar
  44. Garber K (2009) Companies waver in efforts to target transforming growth factor beta in cancer. J Natl Cancer Inst 101:1664–1667PubMedCrossRefGoogle Scholar
  45. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, Hugo C (2014) The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol 307:F317–325PubMedCrossRefGoogle Scholar
  46. Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, Krum H, Langham R, Kelly DJ (2012) A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS ONE 7:e47160PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM, Bouye S, Hazzan M, Pottier N, Perrais M, Aubert S, Cauffiez C (2013) Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE 8:e58014PubMedPubMedCentralCrossRefGoogle Scholar
  48. Goicoechea M, Garcia de Vinuesa S, Quiroga B, Verdalles U, Barraca D, Yuste C, Panizo N, Verde E, Munoz MA, Luno J (2012) Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial. J Nephrol 25:969–975PubMedCrossRefGoogle Scholar
  49. Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, Xia TH, Liu X, Borza DB, Grafals M, Shankland SJ, Himmelfarb J, Portilla D, Liu S, Chau BN, Duffield JS (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125:141–156PubMedCrossRefGoogle Scholar
  50. Gomez IG, Nakagawa N, Duffield JS (2016) MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol 310:F931–944PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gomez-Garre D, Ruiz-Ortega M, Ortego M, Largo R, Lopez-Armada MJ, Plaza JJ, Gonzalez E and Egido J (1996) Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension (Dallas, Tex: 1979) 27:885–892Google Scholar
  52. Griendling KK (2006) NADPH oxidases: new regulators of old functions. Antioxid Redox Signal 8:1443–1445PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gross O, Girgert R, Beirowski B, Kretzler M, Kang HG, Kruegel J, Miosge N, Busse AC, Segerer S, Vogel WF, Muller GA, Weber M (2010) Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biol: J Int Soc Matrix Biol 29:346–356CrossRefGoogle Scholar
  54. Guerrot D, Kerroch M, Placier S, Vandermeersch S, Trivin C, Mael-Ainin M, Chatziantoniou C, Dussaule JC (2011) Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am J Pathol 179:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, Placier S (2012) Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS ONE 7:e31974PubMedPubMedCentralCrossRefGoogle Scholar
  56. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J, Sethi T (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298PubMedPubMedCentralCrossRefGoogle Scholar
  57. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K (2002) Endothelial function and oxidative stress in renovascular hypertension. New Engl J Med 346:1954–1962PubMedCrossRefGoogle Scholar
  58. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 14:1239–1249CrossRefGoogle Scholar
  59. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (2001) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. J Am Soc Nephrol: JASN 12:1315–1325PubMedGoogle Scholar
  60. Hou J, Xiong W, Cao L, Wen X, Li A (2015) Spironolactone add-on for preventing or slowing the progression of diabetic nephropathy: a meta-analysis. Clin Ther 37:2086–2103.e2010PubMedCrossRefGoogle Scholar
  61. Huaux F, Liu T, McGarry B, Ullenbruch M, Xing Z and Phan SH (2003) Eosinophils and T lymphocytes possess distinct roles in bleomycin-induced lung injury and fibrosis. J immunol (Baltimore, Md: 1950) 171:5470–5481Google Scholar
  62. Humphreys BD (2017) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326PubMedCrossRefGoogle Scholar
  63. Hwang JH, Lee JP, Kim CT, Yang SH, Kim JH, An JN, Moon KC, Lee H, Oh YK, Joo KW, Kim DK, Kim YS, Lim CS (2016) Urinary periostin excretion predicts renal outcome in IgA nephropathy. Am J Nephrol 44:481–492PubMedCrossRefGoogle Scholar
  64. Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, Cinar R, Liu Z, Liu J, Ju C, Pacher P, Kunos G (2014) Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci USA 111:E5420–5428PubMedCrossRefGoogle Scholar
  65. Kerroch M, Guerrot D, Vandermeersch S, Placier S, Mesnard L, Jouanneau C, Rondeau E, Ronco P, Boffa JJ, Chatziantoniou C, Dussaule JC (2012) Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis. FASEB J: Off Publ Fed Am Soc Exp Biol 26:4079–4091CrossRefGoogle Scholar
  66. Kerroch M, Alfieri C, Dorison A, Boffa JJ, Chatziantoniou C, Dussaule JC (2016) Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease. Scientific reports 6:21262PubMedPubMedCentralCrossRefGoogle Scholar
  67. Klinkhammer BM, Goldschmeding R, Floege J, Boor P (2017) Treatment of renal fibrosis-turning challenges into opportunities. Adv Chronic Kidney Dis 24:117–129PubMedCrossRefGoogle Scholar
  68. Kok HM, Falke LL, Goldschmeding R, Nguyen TQ (2014) Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10:700–711CrossRefGoogle Scholar
  69. Kuc R, Davenport AP (2004) Comparison of endothelin-A and endothelin-B receptor distribution visualized by radioligand binding versus immunocytochemical localization using subtype selective antisera. J Cardiovasc Pharmacol 44(Suppl 1):S224–226PubMedCrossRefGoogle Scholar
  70. Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753PubMedCrossRefGoogle Scholar
  71. Lassila M, Jandeleit-Dahm K, Seah KK, Smith CM, Calkin AC, Allen TJ, Cooper ME (2005) Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J Am Soc Nephrol: JASN 16:363–373PubMedCrossRefGoogle Scholar
  72. Lecru L, Desterke C, Grassin-Delyle S, Chatziantoniou C, Vandermeersch S, Devocelle A, Vernochet A, Ivanovski N, Ledent C, Ferlicot S, Dalia M, Said M, Beaudreuil S, Charpentier B, Vazquez A, Giron-Michel J, Azzarone B, Durrbach A, Francois H (2015) Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int 88:72–84PubMedCrossRefGoogle Scholar
  73. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. New Engl J Med 345:851–860PubMedCrossRefGoogle Scholar
  74. Li G, Jin R, Norris RA, Zhang L, Yu S, Wu F, Markwald RR, Nanda A, Conway SJ, Smyth SS, Granger DN (2010) Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 208:358–365PubMedCrossRefGoogle Scholar
  75. Li D, Lu Z, Jia J, Zheng Z, Lin S (2013) MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res 37:422–431PubMedCrossRefGoogle Scholar
  76. Li Z, Liu X, Wang B, Nie Y, Wen J, Wang Q, Gu C (2017) Pirfenidone suppresses MAPK signalling pathway to reverse epithelial-mesenchymal transition and renal fibrosis. Nephrology (Carlton, Vic) 22:589–597CrossRefGoogle Scholar
  77. Liu F, Zhuang S (2016) Role of receptor tyrosine kinase signaling in renal fibrosis. Int J Mol Sci 17:972PubMedCentralCrossRefPubMedGoogle Scholar
  78. Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS ONE 8:e54001PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu F, Mei X, Zhang Y, Qi H, Wang J, Wang Y, Jiang W, Zhang X, Yan H, Zhuang S (2014) Association of peroxisome proliferator-activated receptorgamma gene Pro12Ala and C161T polymorphisms with cardiovascular risk factors in maintenance hemodialysis patients. Mol Biol Rep 41:7555–7565PubMedCrossRefGoogle Scholar
  80. Liu N, Wang L, Yang T, Xiong C, Xu L, Shi Y, Bao W, Chin YE, Cheng SB, Yan H, Qiu A, Zhuang S (2015) EGF receptor inhibition alleviates hyperuricemic nephropathy. J Am Soc Nephrol: JASN 26:2716–2729PubMedCrossRefGoogle Scholar
  81. Liu F, Wang L, Qi H, Wang J, Wang Y, Jiang W, Xu L, Liu N and Zhuang S (2017) Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin Sci (London, England: 1979) 131:2125–2143Google Scholar
  82. Llona-Minguez S, Ghassemian A, Helleday T (2015) Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox. Prog Lipid Res 58:51–75PubMedCrossRefGoogle Scholar
  83. Lo DJ, Farris AB, Song M, Leopardi F, Anderson DJ, Strobert EA, Ramakrishnan S, Turgeon NA, Mehta AK, Turnbull B, Maroni B, Violette SM, Kirk AD (2013) Inhibition of alphavbeta6 promotes acute renal allograft rejection in nonhuman primates. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg 13:3085–3093CrossRefGoogle Scholar
  84. Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE (2011) The Sweet Pee model for Sglt2 mutation. J Am Soc Nephrol: JASN 22:113–123PubMedCrossRefGoogle Scholar
  85. Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C (2014) Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol: JASN 25:1724–1736PubMedCrossRefGoogle Scholar
  86. Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, Viberti G (2010) Avosentan for overt diabetic nephropathy. J Am Soc Nephrol: JASN 21:527–535PubMedCrossRefGoogle Scholar
  87. Manson SR, Niederhoff RA, Hruska KA, Austin PF (2011) Endogenous BMP-7 is a critical molecular determinant of the reversibility of obstruction-induced renal injuries. Am J Physiol Renal Physiol 301:F1293–1302PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marquez DF, Ruiz-Hurtado G, Ruilope LM, Segura J (2015) An update of the blockade of the renin angiotensin aldosterone system in clinical practice. Expert Opin Pharmacother 16:2283–2292PubMedCrossRefGoogle Scholar
  89. Martinez-Martinez E, Ibarrola J, Calvier L, Fernandez-Celis A, Leroy C, Cachofeiro V, Rossignol P, Lopez-Andres N (2016) Galectin-3 blockade reduces renal fibrosis in two normotensive experimental models of renal damage. PLoS ONE 11:e0166272PubMedPubMedCentralCrossRefGoogle Scholar
  90. McCormack PL (2015) Nintedanib: first global approval. Drugs 75:129–139PubMedCrossRefGoogle Scholar
  91. McVicker BL, Bennett RG (2017) Novel anti-fibrotic therapies. Front Pharmacol 8:318PubMedPubMedCentralCrossRefGoogle Scholar
  92. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  93. Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol: JASN 13(Suppl 1):S14–21PubMedGoogle Scholar
  94. Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Kim SH, Han SY, Han KH, Han JY, Cha DR (2012) Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology 153:1387–1396PubMedCrossRefGoogle Scholar
  95. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245–253PubMedCrossRefGoogle Scholar
  96. Opocensky M, Kramer HJ, Backer A, Vernerova Z, Eis V, Cervenka L, Certikova Chabova V, Tesar V and Vaneckova I (2006) Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension (Dallas, Tex: 1979) 48:965–971Google Scholar
  97. Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, Zhuang S (2009) Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 297:F996–f1005PubMedPubMedCentralCrossRefGoogle Scholar
  98. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. New Engl J Med 345:870–878PubMedCrossRefGoogle Scholar
  99. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. New Engl J Med 367:2204–2213PubMedCrossRefGoogle Scholar
  100. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock DG (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. New Engl J Med 365:327–336PubMedCrossRefGoogle Scholar
  101. Perkins RM, Aboudara MC, Uy AL, Olson SW, Cushner HM, Yuan CM (2009) Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 53:606–616PubMedCrossRefGoogle Scholar
  102. Prakoura N, Chatziantoniou C (2017) Periostin and discoidin domain receptor 1: new biomarkers or targets for therapy of renal disease. Frontiers in medicine 4:52PubMedPubMedCentralCrossRefGoogle Scholar
  103. RamachandraRao SP, Zhu Y, Ravasi T, McGowan TA, Toh I, Dunn SR, Okada S, Shaw MA, Sharma K (2009) Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol: JASN 20:1765–1775PubMedCrossRefGoogle Scholar
  104. Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Gobel N, Bruhl H, Ketelsen I, Talke Y, Mack M (2013) Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530PubMedPubMedCentralCrossRefGoogle Scholar
  106. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y, Kim DS, Kolb M, Nicholson AG, Noble PW, Selman M, Taniguchi H, Brun M, Le Maulf F, Girard M, Stowasser S, Schlenker-Herceg R, Disse B, Collard HR (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. New Engl J Med 370:2071–2082PubMedCrossRefGoogle Scholar
  107. Robalo-Cordeiro C, Campos P, Carvalho L, Borba A, Clemente S, Freitas S, Furtado S, Jesus JM, Leal C, Marques A, Melo N, Souto-Moura C, Neves S, Sousa V, Santos A, Morais A (2017) Idiopathic pulmonary fibrosis in the era of antifibrotic therapy: Searching for new opportunities grounded in evidence. Revista portuguesa de pneumologia 23:287–293PubMedGoogle Scholar
  108. Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A (2017) Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 16:34–47PubMedCrossRefGoogle Scholar
  109. Saito Y, Nakao K, Mukoyama M, Shirakami G, Itoh H, Yamada T, Arai H, Hosoda K, Suga S, Jougasaki M et al (1990) Application of monoclonal antibodies for endothelin to hypertensive research. Hypertension (Dallas, Tex: 1979) 15:734–738Google Scholar
  110. Saleh MA, Pollock JS, Pollock DM (2011) Distinct actions of endothelin A-selective versus combined endothelin A/B receptor antagonists in early diabetic kidney disease. J Pharmacol Exp Ther 338:263–270PubMedPubMedCentralCrossRefGoogle Scholar
  111. Satirapoj B, Wang Y, Chamberlin MP, Dai T, LaPage J, Phillips L, Nast CC, Adler SG (2012) Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dialysis Transplant: Off Publ Eur Dial Transpl Asso Eur Renal Assoc 27:2702–2711CrossRefGoogle Scholar
  112. Savikko J, Taskinen E, Von Willebrand E (2003) Chronic allograft nephropathy is prevented by inhibition of platelet-derived growth factor receptor: tyrosine kinase inhibitors as a potential therapy. Transplantation 75:1147–1153PubMedCrossRefGoogle Scholar
  113. Schauerte C, Hubner A, Rong S, Wang S, Shushakova N, Mengel M, Dettling A, Bang C, Scherf K, Koelling M, Melk A, Haller H, Thum T, Lorenzen JM (2017) Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction. Kidney Int 92:646–656PubMedCrossRefGoogle Scholar
  114. Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, Segerer S, Cohen CD (2011) Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol 179:1756–1767PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, Francos B, Sharma S, Falkner B, McGowan TA, Donohue M, Ramachandrarao S, Xu R, Fervenza FC, Kopp JB (2011) Pirfenidone for diabetic nephropathy. J Am Soc Nephrol: JASN 22:1144–1151PubMedCrossRefGoogle Scholar
  116. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Muller G (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59:579–592PubMedCrossRefGoogle Scholar
  117. Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, Baumgart T, Ertl LS, Pennell A, Seitz L, Powers J, Zhao R, Ungashe S, Wei Z, Boring L, Tsou CL, Charo I, Berahovich RD, Schall TJ, Jaen JC (2013) CCR118 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR118 knockin mice. Am J Physiol Renal Physiol 305:F1288–1297PubMedPubMedCentralCrossRefGoogle Scholar
  119. Swencki-Underwood B, Mills JK, Vennarini J, Boakye K, Luo J, Pomerantz S, Cunningham MR, Farrell FX, Naso MF, Amegadzie B (2008) Expression and characterization of a human BMP-7 variant with improved biochemical properties. Protein Expr Purif 57:312–319PubMedCrossRefGoogle Scholar
  120. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, Polosukhin V, Wain J, Karimi-Shah BA, Kim ND, Hart WK, Pardo A, Blackwell TS, Xu Y, Chun J, Luster AD (2008) The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14:45–54PubMedCrossRefGoogle Scholar
  121. Tahrani AA, Barnett AH, Bailey CJ (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol 12:566–592PubMedCrossRefGoogle Scholar
  122. Tam J (2016) The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol 27:267–276PubMedCrossRefGoogle Scholar
  123. Tampe B, Zeisberg M (2014a) Evidence for the involvement of epigenetics in the progression of renal fibrogenesis. Nephrol Dialysis Transplant: Off Publ Eur Dial Transpl Asso Eur Renal Assoc 29(Suppl 1):i1–i8CrossRefGoogle Scholar
  124. Tampe D, Zeisberg M (2014b) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237PubMedCrossRefGoogle Scholar
  125. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, Taguchi Y, Takahashi H, Nakata K, Sato A, Takeuchi M, Raghu G, Kudoh S, Nukiwa T (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 35:821–829PubMedCrossRefGoogle Scholar
  126. Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JP, Streisand JB, Hard ML, Ledbetter SR, Vincenti F (2011) A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79:1236–1243PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tsuchiyama Y, Wada J, Zhang H, Morita Y, Hiragushi K, Hida K, Shikata K, Yamamura M, Kanwar YS, Makino H (2000) Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar Kyoto rats. Kidney Int 58:1941–1952PubMedCrossRefGoogle Scholar
  128. Udi S, Hinden L, Earley B, Drori A, Reuveni N, Hadar R, Cinar R, Nemirovski A, Tam J (2017) Proximal tubular cannabinoid-1 receptor regulates obesity-induced CKD. J Am Soc Nephrol: JASN 28:3518–3532PubMedCrossRefGoogle Scholar
  129. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306:F194–204PubMedCrossRefGoogle Scholar
  130. Van Bergen T, Marshall D, Van de Veire S, Vandewalle E, Moons L, Herman J, Smith V, Stalmans I (2013) The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest Ophthalmol Vis Sci 54:5788–5796PubMedCrossRefGoogle Scholar
  131. Vethe H, Finne K, Skogstrand T, Vaudel M, Vikse BE, Hultstrom M, Placier S, Scherer A, Tenstad O, Marti HP (2015) Distinct protein signature of hypertension-induced damage in the renal proteome of the two-kidney, one-clip rat model. J Hypertens 33:126–135PubMedCrossRefGoogle Scholar
  132. Vincenti F, Fervenza FC, Campbell KN, Diaz M, Gesualdo L, Nelson P, Praga M, Radhakrishnan J, Sellin L, Singh A, Thornley-Brown D, Veronese FV, Accomando B, Engstrand S, Ledbetter S, Lin J, Neylan J, Tumlin J (2017) A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis. Kidney Int Rep 2:800–810PubMedPubMedCentralCrossRefGoogle Scholar
  133. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535–542PubMedCrossRefGoogle Scholar
  134. Wallace DP, White C, Savinkova L, Nivens E, Reif GA, Pinto CS, Raman A, Parnell SC, Conway SJ, Fields TA (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845–854CrossRefGoogle Scholar
  135. Wang W, Liu F, Chen N (2007) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists attenuate the profibrotic response induced by TGF-beta1 in renal interstitial fibroblasts. Mediat Inflamm 2007:62641Google Scholar
  136. Weir MR, Bakris GL, Gross C, Mayo MR, Garza D, Stasiv Y, Yuan J, Berman L, Williams GH (2016) Treatment with patiromer decreases aldosterone in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors. Kidney Int 90:696–704PubMedCrossRefGoogle Scholar
  137. Wen WX, Lee SY, Siang R, Koh RY (2017) Repurposing pentoxifylline for the treatment of fibrosis: an overview. Adv Therapy 34:1245–1269CrossRefGoogle Scholar
  138. Wenzel RR, Littke T, Kuranoff S, Jurgens C, Bruck H, Ritz E, Philipp T, Mitchell A (2009) Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol: JASN 20:655–664PubMedCrossRefGoogle Scholar
  139. Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160–166PubMedCrossRefGoogle Scholar
  140. Woodcock HV, Molyneaux PL, Maher TM (2013) Reducing lung function decline in patients with idiopathic pulmonary fibrosis: potential of nintedanib. Drug Des Dev Therapy 7:503–510Google Scholar
  141. Yale JF, Bakris G, Cariou B, Nieto J, David-Neto E, Yue D, Wajs E, Figueroa K, Jiang J, Law G, Usiskin K, Meininger G (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab 16:1016–1027PubMedCrossRefGoogle Scholar
  142. Yan Y, Ma L, Zhou X, Ponnusamy M, Tang J, Zhuang MA, Tolbert E, Bayliss G, Bai J and Zhuang S (2015) Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney IntGoogle Scholar
  143. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. New Engl J Med 358:1547–1559PubMedCrossRefGoogle Scholar
  144. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G (2011) Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 301:F793–801PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968PubMedCrossRefGoogle Scholar
  146. Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, Zhuang S (2016) Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J Am Soc Nephrol: JASN 27:2092–2108PubMedCrossRefGoogle Scholar
  147. Zoja C, Corna D, Rottoli D, Zanchi C, Abbate M, Remuzzi G (2006) Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int 70:97–103PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
  2. 2.Department of Medicine, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations