Advertisement

Renal Interstitial Lymphangiogenesis in Renal Fibrosis

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

The basic physiological functions of the lymphatic system include absorption of water and macromolecular substances in the interstitial fluid to maintain the fluid homeostasis, promoting the intestinal absorption of nutrients such as lipids and vitamins from food. Recent studies have found that lymphangiogenesis is associated with some pathological conditions, such as tumor metastasis, injury repair, and chronic inflammation. For a long time, the study of lymphatic vessels (LVs) has been stagnant because of the lack of lymphatic-specific cytology and molecular markers. Renal interstitial lymphangiogenesis is found in patients with chronic kidney disease (CKD) and a series of animal models of renal fibrosis. Intervention of the formation or maturation of LVs in renal tissue of CKD may reduce the drainage of inflammatory cells, attenuate chronic inflammation, delay the progression of renal fibrosis, and improve renal function. This review will summarize the latest findings on renal interstitial lymphangiogenesis in CKD.

Keywords

Lymphangiogenesis Kidney disease Renal fibrosis Immune responses 

References

  1. Adair A, Mitchell DR, Kipari T, Qi F, Bellamy CO, Robertson F et al (2007) Peritubular capillary rarefaction and lymphangiogenesis in chronic allograft failure. Transplantation 83:1542–1550CrossRefGoogle Scholar
  2. Bakris GL (2008) Slowing nephropathy progression: focus on proteinuria reduction. Clin J Am Soc Nephrol 3(Suppl 1):S3–10CrossRefGoogle Scholar
  3. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801CrossRefGoogle Scholar
  4. Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO (2008) VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res 78:315–323CrossRefGoogle Scholar
  5. Cheung L, Han J, Beilhack A, Joshi S, Wilburn P, Dua A et al (2006) An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. BioDrugs 20:363–370CrossRefGoogle Scholar
  6. Choi I, Lee S, Hong YK (2012) The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2:a006445CrossRefGoogle Scholar
  7. D’Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S et al (2014) VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest 124:3863–3878CrossRefGoogle Scholar
  8. D’Amico G, Korhonen EA, Waltari M, Saharinen P, Laakkonen P, Alitalo K (2010) Loss of endothelial Tie1 receptor impairs lymphatic vessel development-brief report. Arterioscler Thromb Vasc Biol 30:207–209CrossRefGoogle Scholar
  9. Eddy AA (2004) Proteinuria and interstitial injury. Nephrol Dial Transplant 19:277–281CrossRefGoogle Scholar
  10. El-Chemaly S, Malide D, Zudaire E, Ikeda Y, Weinberg BA, Pacheco-Rodriguez G et al (2009) Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms. Proc Natl Acad Sci U S A 106:3958–3963CrossRefGoogle Scholar
  11. Förster R, Davalos-Misslitz AC, Rot A (2008) CCR11 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371CrossRefGoogle Scholar
  12. Güç E, Briquez PS, Foretay D, Fankhauser MA, Hubbell JA, Kilarski WW, Swartz MA (2017) Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials 131:160–175CrossRefGoogle Scholar
  13. Hasegawa S, Nakano T, Torisu K, Tsuchimoto A, Eriguchi M, Haruyama N et al (2017) Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab Invest 97:1439–1452CrossRefGoogle Scholar
  14. Heller F, Lindenmeyer MT, Cohen CD, Brandt U, Draganovici D, Fischereder M et al (2007) The contribution of B cells to renal interstitial inflammation. Am J Pathol 170:457–468CrossRefGoogle Scholar
  15. Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314:85–92CrossRefGoogle Scholar
  16. Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M et al (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117:4667–4678CrossRefGoogle Scholar
  17. Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M (2010) Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 207:2255–2269CrossRefGoogle Scholar
  18. Johnson LA, Jackson DG (2008) Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci 1131:119–133CrossRefGoogle Scholar
  19. Jung YJ, Lee AS, Nguyen-Thanh T, Kang KP, Lee S, Jang KY et al (2015) Hyaluronan-induced VEGF-C promotes fibrosis-induced lymphangiogenesis via Toll-like receptor 4-dependent signal pathway. Biochem Biophys Res Commun 466:339–345CrossRefGoogle Scholar
  20. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92:3566–3570CrossRefGoogle Scholar
  21. Kang S, Lee SP, Kim KE, Kim HZ, Mémet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113:2605–2613CrossRefGoogle Scholar
  22. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80CrossRefGoogle Scholar
  23. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612CrossRefGoogle Scholar
  24. Khawar MB, Mukhtar M, Abbasi MH, Sheikh N (2017) IL-32θ: a recently identified anti-inflammatory variant of IL-32 and its preventive role in various disorders and tumor suppressor activity. Am J Transl Res 9:4726–4737PubMedPubMedCentralGoogle Scholar
  25. Kim H, Kataru RP, Koh GY (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33:350–356CrossRefGoogle Scholar
  26. Kim H, Kataru RP, Koh GY (2014) Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 124:936–942CrossRefGoogle Scholar
  27. Kinashi H, Falke LL, Nguyen TQ, Bovenschen N, Aten J, Leask A et al (2017) Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int 92:850–863CrossRefGoogle Scholar
  28. Kriz W, Hartmann I, Hosser H, Hähnel B, Kränzlin B, Provoost A et al (2001) Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis. J Am Soc Nephrol 12:496–506PubMedGoogle Scholar
  29. Lee AS, Lee JE, Jung YJ, Kim DH, Kang KP, Lee S et al (2013) Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int 83:50–62CrossRefGoogle Scholar
  30. Mäkinen T, Norrmén C, Petrova TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64:1915–1929CrossRefGoogle Scholar
  31. Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20:4762–4773CrossRefGoogle Scholar
  32. Martínez-Corral I, Olmeda D, Diéguez-Hurtado R, Tammela T, Alitalo K, Ortega S (2012) In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci U S A 109:6223–6228CrossRefGoogle Scholar
  33. Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S et al (2003) Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol 14:1981–1989CrossRefGoogle Scholar
  34. Meinecke AK, Nagy N, Lago GD, Kirmse S, Klose R, Schrödter K et al (2012) Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis. Blood 119:5931–5942CrossRefGoogle Scholar
  35. Moreno JA, Moreno S, Rubio-Navarro A, Gómez-Guerrero C, Ortiz A, Egido J (2014) Role of chemokines in proteinuric kidney disorders. Expert Rev Mol Med 16:e3CrossRefGoogle Scholar
  36. Nykänen AI, Sandelin H, Krebs R, Keränen MA, Tuuminen R, Kärpänen T et al (2010) Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121:1413–1422CrossRefGoogle Scholar
  37. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45CrossRefGoogle Scholar
  38. Palin NK, Savikko J, Koskinen PK (2013) Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transpl Int 26:195–205CrossRefGoogle Scholar
  39. Platonova N, Miquel G, Regenfuss B, Taouji S, Cursiefen C, Chevet E et al (2013) Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121:1229–1237CrossRefGoogle Scholar
  40. Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ et al (2009) Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J Immunol 183:1767–1779CrossRefGoogle Scholar
  41. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI et al (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106CrossRefGoogle Scholar
  42. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K et al (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR42 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 103:14098–14103CrossRefGoogle Scholar
  43. Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A et al (2009) Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int 75:828–838CrossRefGoogle Scholar
  44. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618CrossRefGoogle Scholar
  45. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153:13–19CrossRefGoogle Scholar
  46. Suzuki Y, Ito Y, Mizuno M, Kinashi H, Sawai A, Noda Y et al (2012) Transforming growth factor-beta induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int 81:865–879CrossRefGoogle Scholar
  47. Szuba A, Skobe M, Karkkainen MJ, Shin WS, Beynet DP, Rockson NB et al (2002) Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 16:1985–1987CrossRefGoogle Scholar
  48. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476CrossRefGoogle Scholar
  49. Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M et al (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13:1458–1466CrossRefGoogle Scholar
  50. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231CrossRefGoogle Scholar
  51. Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B et al (2013) The immunology of fibrosis. Annu Rev Immunol 31:107–135CrossRefGoogle Scholar
  52. Xiong Y, Liu Z, Zhao X, Ruan S, Zhang X, Wang S et al (2018) CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomed Pharmacother 106:1–7CrossRefGoogle Scholar
  53. Yazdani S, Navis G, Hillebrands JL, van Goor H, van den Born J (2014) Lymphangiogenesis in renal diseases: passive bystander or active participant? Expert Rev Mol Med 16:e15CrossRefGoogle Scholar
  54. Yazdani S, Poosti F, Kramer AB, Mirković K, Kwakernaak AJ, Hovingh M et al (2012) Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis. PLoS ONE 7:e50209CrossRefGoogle Scholar
  55. Yin N, Zhang N, Xu J, Shi Q, Ding Y, Bromberg JS (2011) Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92:25–30CrossRefGoogle Scholar
  56. Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ (2012) CD4(+) cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS ONE 7:e49940CrossRefGoogle Scholar
  57. Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M et al (2010) VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20:1319–1331CrossRefGoogle Scholar
  58. Zhang T, Guan G, Liu G, Sun J, Chen B, Li X et al (2008) Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology (Carlton) 13:128–138CrossRefGoogle Scholar
  59. Zhou HL, Wang YT, Gao T, Wang WG, Wang YS (2013) Distribution and expression of fibroblast-specific protein chemokine CCL21 and chemokine receptor CCR59 in renal allografts. Transplant Proc 45:538–545CrossRefGoogle Scholar
  60. Zhou Q, Guo R, Wood R, Boyce BF, Liang Q, Wang YJ et al (2011) Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum 63:2318–2328CrossRefGoogle Scholar
  61. Zimmer JK, Dahdal S, Mühlfeld C, Bergmann IP, Gugger M, Huynh-Do U (2010) Lymphangiogenesis is upregulated in kidneys of patients with multiple myeloma. Anat Rec 293:1497–1505 (Hoboken)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations