Advertisement

Marine Nanopharmaceuticals for Drug Delivery and Targeting

  • Innocent J. MachaEmail author
  • Besim Ben-Nissan
  • Wolfgang H. Müller
  • Sophie Cazalbou
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)

Abstract

The current need for new medicines with reduced toxicity, enhanced bioavailability as well as improved drug efficacy and patient compliance is more pressing than ever before. Clinical active agents can now be reformulated with the help of nanotechnology into “nanopharmaceuticals” with superior pharmacokinetics for site-specific delivery. With the available nanotechnology, studies suggested that marine drugs hold tremendous promise to bring forth novel medicines for the treatment of a wide range of human diseases, but unfortunately this promise has yet to be fully realized. Deadliest diseases such as cancer, HIV/AIDS, and neurological disorders, just to mention few, can be halted by using marine nanopharmaceuticals, which are cost-effective natural products. Legal and scientific frameworks have to be in place with full support from global human health communities to create a unique set of opportunities in the cause of biodiscovery and marine drug development processes.

Keywords

Marine nanopharmaceuticals Anti-cancer Anti-HIV/AIDS Neurological disorders Multiple sclerosis 

References

  1. 1.
    Evers P (2015) Nanotechnology in Medical Applications: The Global Market. https://www.bccresearch.com/market-research/healthcare/nanotechnology-medical-applications-market-hlc069c.html. Accessed 16 Mar 2018
  2. 2.
    Bawa R (2010) Nanopharmaceuticals: nanopharmaceuticals. Eur J Nanomed 3:34–40CrossRefGoogle Scholar
  3. 3.
    Mora C, Tittensor DP, Adl S et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127CrossRefGoogle Scholar
  4. 4.
    Ben-Nissan B (2015) Discovery and development of marine biomaterials. In: Kim SK (ed) Functional marine biomaterials, Woodhead Publishing Series in Biomaterials. Woodhead Publishing, Cambridge, pp 3–32Google Scholar
  5. 5.
    Blunt JW, Carroll AR, Copp BR et al (2018) Marine natural products. Nat Prod Rep 35:8–53CrossRefGoogle Scholar
  6. 6.
    Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570CrossRefGoogle Scholar
  7. 7.
    Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97CrossRefGoogle Scholar
  8. 8.
    Bergmann W, Feeney RJ (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges. I.1. J Org Chem 16:981–987CrossRefGoogle Scholar
  9. 9.
    Mayer AM, Glaser KB, Cuevas C et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265CrossRefGoogle Scholar
  10. 10.
    Macha IJ, Ozyegin LS, Chou J et al (2013) An alternative synthesis method for di calcium phosphate (monetite) powders from Mediterranean mussel (Mytilus Galloprovincialis) shells. J Aust Ceram Soc 49:122–128Google Scholar
  11. 11.
    Rinehart KL (1992) Secondary metabolites from marine organisms. Ciba Found Symp 171:236–49; discussion 249–254Google Scholar
  12. 12.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30CrossRefGoogle Scholar
  13. 13.
    Piel J, Hui D, Wen G et al (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227CrossRefGoogle Scholar
  14. 14.
    Rinehart KL Jr, Gloer JB, Carter Cook J Jr et al (1981) Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J Am Chem Soc 103:1857–1859CrossRefGoogle Scholar
  15. 15.
    Martín MJ, Coello L, Fernández R et al (2013) Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc 135:10164–10171CrossRefGoogle Scholar
  16. 16.
    Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42:355–357CrossRefGoogle Scholar
  17. 17.
    Gunasekera SP, Gunasekera M, Longley RE et al (1990) Discodermolide—a new bioactive polyhydroxylated lactone from the marine sponge Discodermia-dissoluta. J Org Chem 55:4912–4915CrossRefGoogle Scholar
  18. 18.
    Kong CS, Kim JA, Yoon NY et al (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658CrossRefGoogle Scholar
  19. 19.
    Liu S, Wu S, Jiang S (2007) HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. Curr Pharm Des 13:143–162CrossRefGoogle Scholar
  20. 20.
    Zhou X, Liu J, Yang B et al (2013) Marine natural products with anti-HIV activities in the last decade. Curr Med Chem 20:953–973Google Scholar
  21. 21.
    Rowley DC, Hansen MS, Rhodes D et al (2002) Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10:3619–3625CrossRefGoogle Scholar
  22. 22.
    Trinchero J, Ponce NM, Córdoba OL et al (2009) Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother Res 23:707–712CrossRefGoogle Scholar
  23. 23.
    Saito S, Watabe S, Ozaki H et al (1994) Mycalolide B, a novel actin depolymerizing agent. J Biol Chem 269:29710–29714Google Scholar
  24. 24.
    Plaza A, Gustchina E, Baker HL et al (2007) Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 70:1753–1760CrossRefGoogle Scholar
  25. 25.
    Donia MS, Wang B, Dunbar DC et al (2008) Mollamides B and C, Cyclic hexapeptides from the indonesian tunicate Didemnum molle. J Nat Prod 71:941–945CrossRefGoogle Scholar
  26. 26.
    Fan G, Li Z, Shen S et al (2010) Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg Med Chem 18:5466–5474CrossRefGoogle Scholar
  27. 27.
    Kubanek J, Prusak AC, Snell TW et al (2005) Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. Org Lett 7:5261–5264CrossRefGoogle Scholar
  28. 28.
    Abdel-Lateff A, Fisch K, Wright AD (2009) Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z Naturforsch C 64:186–192CrossRefGoogle Scholar
  29. 29.
    You J, Dai H, Chen Z et al (2010) Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7, 22-diene-3β, 5α, 6β-triol, with new activities from the marine-derived fungus Trichoderma sp. J Ind Microbiol Biotechnol 37:245–252CrossRefGoogle Scholar
  30. 30.
    Russo P, Kisialiou A, Lamonaca P et al (2015) New drugs from marine organisms in Alzheimer’s disease. Mar Drugs 14:5CrossRefGoogle Scholar
  31. 31.
    Ahmadi A, Habibi G, Farrokhnia M (2010) MS14, an Iranian herbal-marine compound for the treatment of multiple sclerosis. Chin J Integr Med 16:270–271CrossRefGoogle Scholar
  32. 32.
    Liu J, Banskota AH, Critchley AT et al (2015) Neuroprotective effects of the cultivated Chondrus crispus in a C. elegans model of Parkinson’s disease. Mar Drugs 13:2250–2266CrossRefGoogle Scholar
  33. 33.
    Iqbal K, Alonso AD, Gondal JA et al (2000) Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J Neural Transm Suppl 59:213–222Google Scholar
  34. 34.
    Lane RM, Kivipelto M, Greig NH (2004) Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol 27:141–149CrossRefGoogle Scholar
  35. 35.
    Turk T, Macek P, Suput D (1995) Inhibition of acetylcholinesterase by a pseudozoanthoxanthin-like compound isolated from the zoanthid Parazoanthus axinellae (O. Schmidt). Toxicon 33:133–142CrossRefGoogle Scholar
  36. 36.
    Sepcić K, Guella G, Mancini I et al (1997) Characterization of anticholinesterase-active 3-alkylpyridinium polymers from the marine sponge Reniera sarai in aqueous solutions. J Nat Prod 60:991–996CrossRefGoogle Scholar
  37. 37.
    Mehbub MF, Lei J, Franco C et al (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Innocent J. Macha
    • 1
    • 3
    Email author
  • Besim Ben-Nissan
    • 2
  • Wolfgang H. Müller
    • 3
  • Sophie Cazalbou
    • 4
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Dar es SalaamDar es SalaamTanzania
  2. 2.Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of TechnologySydneyAustralia
  3. 3.Mechanical Engineering and Transport Systems, Institute of Mechanics, Continuum Mechanics and Constitutive TheoryBerlinGermany
  4. 4.Faculty of Pharmacie, CIRIMAT Carnot Institute, CNRS–INPT–UPS, University of ToulouseToulouseFrance

Personalised recommendations