Advertisement

Type III Polyketide Synthases: Current State and Perspectives

  • Thangamani Rajesh
  • Manish K. Tiwari
  • Sairam Thiagarajan
  • Pranav S. Nair
  • Marimuthu JeyaEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 17)

Abstract

Microorganisms produce an array of secondary metabolites primarily for their growth, self-defense, communication, and survival in natural environments. Among several other microbial secondary metabolites, antibiotic (antimicrobial, antiviral, and antifungal activities) compound effects are vital for humans and other higher living organisms to combat pathogens. Even though several such antibiotic compounds are identified in the past decades, very few have been commercialized and made available for practical applications. Polyketides are secondary metabolites that are produced as a result of enzyme-catalyzed condensation/polymerization reactions of simple fatty acids resulting in products with diverse structural and functional properties. The enzymes involved in the production of polyketides are polyketide synthases (PKSs), which are mainly involved in condensation of acyl-thioester units into functional secondary metabolites. Based on the origin and structural diversity, PKSs are classified as type I PKSs, type II PKSs, and type III PKSs. Type I PKSs are large multifunctional proteins with multi-domain architecture and are mostly of fungal origin, whereas type II PKSs are mono-functional proteins predominantly present in bacteria and actinomycetes. Type III PKSs are primarily of plant origin, and very few have been reported from microbial sources. In this chapter, the occurrence and distribution of type III PKSs, the genetic architecture of the genes involved in type III polyketide biosynthesis, the protein structure of type III PKSs, and the commercial importance of type III PKSs are discussed in detail.

Keywords

Type III polyketide synthases Fungi Product specificity Protein engineering Commercial implications 

References

  1. Abe I (2008) Engineering of plant polyketide biosynthesis. Chem Pharm Bull 56(11):1505–1514.  https://doi.org/10.5059/yukigoseikyokaishi.66.683CrossRefPubMedGoogle Scholar
  2. Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27(6):809–838.  https://doi.org/10.1039/b909988nCrossRefPubMedGoogle Scholar
  3. Achkar J, Xian M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc 127(15):5332–5333.  https://doi.org/10.1021/ja042340gCrossRefPubMedGoogle Scholar
  4. Aizawa T, Kim SY, Takahashi S et al (2014) Alkyldihydropyrones, new polyketides synthesized by a type III polyketide synthase from Streptomyces reveromyceticus. J Antibiot (Tokyo) 67:819–823.  https://doi.org/10.1038/ja.2014.80CrossRefGoogle Scholar
  5. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110.  https://doi.org/10.1039/b100917fCrossRefGoogle Scholar
  6. Austin MB, Izumikawa M, Bowman ME et al (2004) Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J Biol Chem 279:45162–45174.  https://doi.org/10.1074/jbc.M406567200CrossRefPubMedGoogle Scholar
  7. Austin MB, Saito T, Bowman ME et al (2006) Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol 2(9):494–502.  https://doi.org/10.1038/nchembio811CrossRefPubMedPubMedCentralGoogle Scholar
  8. Awakawa T, Fujita N, Hayakawa M et al (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. Chembiochem 12(3):439–448.  https://doi.org/10.1002/cbic.201000628CrossRefPubMedGoogle Scholar
  9. Awakawa T, Sugai Y, Otsutomo K et al (2013) 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillumcentenum. Chem Bio Chem 14(8):1006–1013.  https://doi.org/10.1002/cbic.201300066CrossRefPubMedGoogle Scholar
  10. Baharum H, Morita H, Tomitsuka A et al (2011) Molecular cloning, modeling, and site-directed mutagenesis of type III polyketide synthase from Sargassum binderi (Phaeophyta). Mar Biotechnol 13:845–856.  https://doi.org/10.1007/s10126-010-9344-5CrossRefPubMedGoogle Scholar
  11. Chemler JA, Buchholz TJ, Geders TW et al (2012) Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J Am Chem Soc 134:7359–7366.  https://doi.org/10.1021/ja2112228CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferrer JL, Jez JM, Bowman ME et al (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784.  https://doi.org/10.1038/11553CrossRefPubMedGoogle Scholar
  13. Frankel BA, McCafferty DG (2004) Profiling natural product biosynthesis. Chem Biol 11:290–291.  https://doi.org/10.1016/j.chembiol.2004.03.007CrossRefPubMedGoogle Scholar
  14. Funa N, Funabashi M, Ohnishi Y, Horinouchi S (2005) Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J Bacteriol 187:8149–8155.  https://doi.org/10.1128/JB.187.23.8149-8155.2005CrossRefPubMedPubMedCentralGoogle Scholar
  15. Funa N, Ohnishi Y, Ebizuka Y et al (2001) Properties and substrate specificity of RppA , a chalcone synthase- related polyketide synthase in Streptomyces griseus. Biochemistry.  https://doi.org/10.1074/jbc.M110357200CrossRefGoogle Scholar
  16. Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S (2002) Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis. Biochem J 367:781–789.  https://doi.org/10.1042/bj20020953CrossRefPubMedPubMedCentralGoogle Scholar
  17. Funa N, Ozawa H, Hirata A et al (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobactervinelandii. Proc Natl Acad Sci U S A 103:6356–6361.  https://doi.org/10.1073/pnas.0511227103CrossRefPubMedPubMedCentralGoogle Scholar
  18. Funa N, Awakawa T, Horinouchi S (2007) Pentaketideresorcylic acid synthesis by type III polyketide synthase from Neurosporacrassa. J Biol Chem 282:14476–14481.  https://doi.org/10.1074/jbc.M701239200CrossRefPubMedGoogle Scholar
  19. Funabashi M, Funa N, Horinouchi S (2008) Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J Biol Chem 283(20):13983–13991.  https://doi.org/10.1074/jbc.M710461200CrossRefPubMedGoogle Scholar
  20. Ghosh R, Chhabra A, Phatale PA et al (2008) Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J Biol Chem 283(17):11348–11354.  https://doi.org/10.1074/jbc.M709588200CrossRefPubMedGoogle Scholar
  21. Gomez-Escribano JP, Alt S, Bibb MJ (2016) Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar Drugs 14:6–8.  https://doi.org/10.3390/md14040078CrossRefGoogle Scholar
  22. Goyal A, Saxena P, Rahman A et al (2008) Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurosporacrassa. J Struct Biol 162(3):411–421.  https://doi.org/10.1016/j.jsb.2008.02.009CrossRefPubMedGoogle Scholar
  23. Hashimoto M, Nonaka T, Fujii I (2014) Fungal type III polyketide synthases. Nat Prod Rep 31:1306–1317.  https://doi.org/10.1039/c4np00096jCrossRefPubMedPubMedCentralGoogle Scholar
  24. Hayashi T, Kitamura Y, Funa N et al (2011) Fatty acyl-AMP ligase involvement in the production of Alkylresorcylic acid by a Myxococcusxanthus type III polyketide synthase. Chembiochem 12:2166–2176.  https://doi.org/10.1002/cbic.201100344CrossRefPubMedGoogle Scholar
  25. Hertweck C, Luzhetskyy A, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190.  https://doi.org/10.1039/b507395mCrossRefPubMedGoogle Scholar
  26. Hou L, Huiming H, Li H, Wang S et al (2018) Overexpression of a type III PKS gene affording affording novel violapyrones with enhanced anti-influenza A virus activity. Microb Cell Factories 17:61.  https://doi.org/10.1186/s12934-018-0908-9CrossRefGoogle Scholar
  27. Jeya M, Kim TS, Kumar Tiwari M et al (2012a) A type III polyketide synthase from Rhizobium etli condenses malonylCoAs to a heptaketidepyrone with unusually high catalytic efficiency. Mol Biosyst 8(12):3103–3106.  https://doi.org/10.1039/c2mb25347jCrossRefPubMedGoogle Scholar
  28. Jeya M, Kim TS, Tiwari MK et al (2012b) The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs. Mol Biosyst 8(11):2864–2867.  https://doi.org/10.1039/c2mb25282aCrossRefPubMedGoogle Scholar
  29. Katsuyama Y, Matsuzawa M, Funa N et al (2007) In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J Biol Chem 282:37702–37709.  https://doi.org/10.1074/jbc.M707569200CrossRefPubMedGoogle Scholar
  30. Katsuyama Y, Kita T, Funa N et al (2009) Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J Biol Chem 284(17):11160–11170.  https://doi.org/10.1074/jbc.M900070200CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kirimura K, Watanabe S, Kobayashi K (2016) Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillusniger NRRL 328. Biochem Biophys Res Commun 473(4):1106–1110.  https://doi.org/10.1016/j.bbrc.2016.04.023CrossRefPubMedGoogle Scholar
  32. Lackner G, Misiek M, Braesel J, Hoffmeister D (2012) Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycetepolyketide synthases. Fungal Genet Biol.  https://doi.org/10.1016/j.fgb.2012.09.009CrossRefGoogle Scholar
  33. Li J, Luo Y, Lee J-K, Zhao H (2011) Cloning and characterization of a type III polyketide synthase from Aspergillusniger. Bioorg Med Chem Lett 21(20):6085–6089.  https://doi.org/10.1016/j.bmcl.2011.08.058CrossRefPubMedGoogle Scholar
  34. Lim YP, Go MK, Yew WS (2016) Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21:1–37.  https://doi.org/10.3390/molecules21060806CrossRefGoogle Scholar
  35. Mallika V, Sivakumar KC, Jaichand S, Soniya EV (2010) Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins. J Integr Bioinform 7(1):143.  https://doi.org/10.2390/biecoll-jib-2010-143CrossRefGoogle Scholar
  36. Meslet-Cladière L, Delage L, Leroux CJ-J et al (2013) Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell 25:3089–3103.  https://doi.org/10.1105/tpc.113.111336CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miyanaga A, Funa N, Awakawa T, Horinouchi S (2008) Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis. Proc Natl Acad Sci 105(3):871–876.  https://doi.org/10.1073/pnas.0709819105CrossRefPubMedGoogle Scholar
  38. Mizuuchi Y, Shimokawa Y, Wanibuchi K et al (2008) Structure function analysis of novel type III polyketide synthases from Arabidopsis thaliana. Biol Pharm Bull 31:2205–2210.  https://doi.org/10.1248/bpb.31.2205CrossRefPubMedGoogle Scholar
  39. Mori T, Yang D, Matsui T et al (2015) Structural basis for the formation of acylalkylpyrones from two beta-ketoacyl units by the fungal type III polyketide synthase CsyB. J Biol Chem 290:5214–5225.  https://doi.org/10.1074/jbc.M114.626416CrossRefPubMedPubMedCentralGoogle Scholar
  40. Morita H, Yamashita M, Shi S-P et al (2011) Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase. Proc Natl Acad Sci 108(33):13504–13509.  https://doi.org/10.1073/pnas.1107782108CrossRefPubMedGoogle Scholar
  41. Muggia L, Grube M (2010) Erratum type III polyketide synthases in lichen mycobionts. Fungal Biol 114(4):379–385.  https://doi.org/10.1016/j.funbio.2010.03.001CrossRefPubMedGoogle Scholar
  42. Nakano C, Ozawa H, Akanuma G et al (2009) Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis. J Bacteriol 191:4916–4923.  https://doi.org/10.1128/JB.00407-09CrossRefPubMedPubMedCentralGoogle Scholar
  43. Parvez A, Giri S, Bisht R, Saxena P (2018) New insights on cyclization specificity of fungal type III polyketide synthase, PKSIIINc in Neurosporacrassa. Indian J Microbiol 58:268–277.  https://doi.org/10.1007/s12088-018-0738-9CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pfeifer A, Chaitan K (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65:106–118.  https://doi.org/10.1128/MMBR.65.1.106-118.2001CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ramakrishnan D, Tiwari MK, Manoharan G et al (2018) Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi. Enzyme Microb Technol 115:16–22.  https://doi.org/10.1016/j.enzmictec.2018.04.006CrossRefPubMedGoogle Scholar
  46. Rimando AM, Baerson R (eds) (2007) Polyketides: biosynthesis, biological activity, and genetic engineering. American Chemical Society, Washington, DCGoogle Scholar
  47. Rubin-Pitel SB, Zhang H, Vu T et al (2008) Distinct structural elements dictate the specificity of the type III pentaketide synthase from Neurosporacrassa. Chem Biol 15(10):1079–1090.  https://doi.org/10.1016/j.chembiol.2008.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sankaranarayanan R, Saxena P, Marathe UB et al (2004) A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nat Struct Mol Biol 11:894–900.  https://doi.org/10.1038/nsmb809CrossRefPubMedGoogle Scholar
  49. Satou R, Miyanaga A, Ozawa H et al (2013) Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases. J Biol Chem 288:34146–34157.  https://doi.org/10.1074/jbc.M113.487272CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saxena P, Yadav G, Mohanty D et al (2003) A new family of type III polyketide synthases in Mycobacterium tuberculosis. J Biol Chem 278(45):44780–44790.  https://doi.org/10.1074/jbc.M306714200CrossRefPubMedGoogle Scholar
  51. Seshime Y, Juvvadi PR, Kitamoto K et al (2010a) Aspergillusoryzae type III polyketide synthase CsyA is involved in the biosynthesis of 3,5-dihydroxybenzoic acid. Bioorg Med Chem Lett 20(16):4785–4788.  https://doi.org/10.1016/j.bmcl.2010.06.119CrossRefPubMedGoogle Scholar
  52. Seshime Y, Juvvadi PR, Kitamoto K et al (2010b) Identification of csypyrone B1 as the novel product of Aspergillusoryzae type III polyketide synthase CsyB. Bioorg Med Chem 18(12):4542–4546.  https://doi.org/10.1016/j.bmc.2010.04.058CrossRefPubMedGoogle Scholar
  53. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968CrossRefGoogle Scholar
  54. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295.  https://doi.org/10.1016/S1367-5931(03)00020-6CrossRefGoogle Scholar
  55. Shi SP, Wanibuchi K, Morita H et al (2009) Enzymatic formation of unnatural novel chalcone, stilbene, and benzophenone scaffolds by plant type III polyketide synthase. Org Lett 11:551–554.  https://doi.org/10.1021/ol802606wCrossRefPubMedGoogle Scholar
  56. Shimizu Y, Ogata H, Goto S (2017) Type III polyketide synthases: functional classification and phylogenomics. Chembiochem 18:1048–1049.  https://doi.org/10.1002/cbic.201700230CrossRefPubMedGoogle Scholar
  57. Song L, Barona-Gomez F, Corre C et al (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128(46):14754–14755.  https://doi.org/10.1021/ja065247wCrossRefPubMedPubMedCentralGoogle Scholar
  58. Taguchi T, Itou K, Ebizuka Y et al (2000) Chemical characterisation of disruptants of the Streptomyces coelicolorA3(2) actVI genes involved in actinorhodin biosynthesis. J Antibiot (Tokyo) 53:144–152.  https://doi.org/10.7164/antibiotics.53.144CrossRefGoogle Scholar
  59. Tang X, Eitel K, Kaysser L et al (2013) A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. Nat Chem Biol 9(10):610–615.  https://doi.org/10.1038/nchembio.1310CrossRefPubMedGoogle Scholar
  60. Thanapipatsiri A, Claesen J, Gomez-Escribano J-P et al (2015) A Streptomyces coelicolor host for the heterologous expression of type III polyketide synthase genes. Microb Cell Factories 14:145.  https://doi.org/10.1186/s12934-015-0335-0CrossRefGoogle Scholar
  61. Wu HC, Li YS, Liu YC et al (2012) Chain elongation and cyclization in type III PKS DpgA. Chem Bio Chem 3(6):862–871.  https://doi.org/10.1002/cbic.201200051CrossRefGoogle Scholar
  62. Yu D, Zeng J, Chen D, Zhan J (2010) Characterization and reconstitution of a new fungal type III polyketide synthase from Aspergillusoryzae. Enzyme Microb Technol 46:575–580.  https://doi.org/10.1016/j.enzmictec.2010.02.011CrossRefGoogle Scholar
  63. Yu D, Xu F, Zeng J, Zhan J (2012) Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64:285–295.  https://doi.org/10.1002/iub.1005CrossRefPubMedGoogle Scholar
  64. Zha W, Rubin-Pitel SB, Zhao H (2006) Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens. J Biol Chem 281(42):32036–32047.  https://doi.org/10.1074/jbc.M606500200CrossRefPubMedGoogle Scholar
  65. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes – a review. Nat Prod Rep 33:988–1005.  https://doi.org/10.1039/C6NP00025HCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Thangamani Rajesh
    • 1
  • Manish K. Tiwari
    • 2
  • Sairam Thiagarajan
    • 3
  • Pranav S. Nair
    • 1
  • Marimuthu Jeya
    • 4
    Email author
  1. 1.Biotechnology DivisionCSIR- National Engineering and Environmental Research Institute, Chennai Zonal CenterChennaiIndia
  2. 2.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  3. 3.PSG Centre for Molecular Medicine and TherapeuticsPSG Institute of Medical Sciences and ResearchCoimbatoreIndia
  4. 4.Marine Biotechnology DivisionNational Institute of Ocean TechnologyChennaiIndia

Personalised recommendations