Advertisement

Nanotechnology and Sustainable Agriculture

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem
Chapter

Abstract

Nanoparticles interact with plants causing many morphological and physiological changes, depending on their properties. Their chemical composition, size, surface covering, reactivity, and most importantly the dose at which they are effective determine efficacy of Nanoparticles. Though their importance is immense and day-by-day due to the technological advancement their role is marking an impact in every sphere of living. Now a day’s every science is served with Nano-techniques from nano-medicine to nano-Agriculture. In this context, the chapter is divided in several sections depending on the need of assessment of the topic particularly with reference to Agriculture sustainability.

Keywords

Nano pesticides Microencapsulation Nano fertilizers Nanotechnology 

References

  1. Albertini, B., Passerini, N., Di Sabatino, M., Vitali, B., Brigidi, P., & Rodriguez, L. (2008). Polymer-lipid based mucoadhesive microspheres prepared by spray-congealing for the vsilverinal delivery of econazole nitrate. European Journal of Pharmaceutical Sciences, 36(4–5), 591–601. 2009 March 2.PubMedGoogle Scholar
  2. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Au-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66, 303–310.CrossRefGoogle Scholar
  3. Aziz, N., Faraz, M., Pandey, R., Sakir, M., Fatma, T., Varma, A., et al. (2015). Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir, 31, 11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081.CrossRefPubMedGoogle Scholar
  4. Aziz, N., Pandey, R., Barman, I., & Prasad, R. (2016). Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Frontiers in Microbiology, 7, 1984.  https://doi.org/10.3389/fmicb.2016.01984.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bao-shan, L., Shao-qi, D., Chun-hui, L., Li-jun, F., Shu-chun, Q., & Min, Y. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forest Research, 15, 138–140.CrossRefGoogle Scholar
  6. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, 850–857.CrossRefGoogle Scholar
  7. Begum, P., & Fugetsu, B. (2012). Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. Journal of Hazardous Materials, 243, 212–222.CrossRefGoogle Scholar
  8. Begum, P., Ikhtiari, R., & Fugetsu, B. (2014). Potential impact of multi-walled carbon nanotubes exposure to the seedling stcapsule of selected plant species. Nanomaterials, 4(2), 203–221.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., & Prasad, R. (2016). Nano-biofungicides: Emerging trend in insect pest control. In R. Prasad (Ed.), Advances and applications through fungal nanobiotechnology (pp. 307–319). Cham: Springer.  https://doi.org/10.1007/978-3-319-42990-8_15.CrossRefGoogle Scholar
  10. Bodmeier, R., & McGinity, J. W. (1988). Solvent selection in the preparation of PLA microspheres prepared by the solvent evaporation method. International Journal of Pharmaceutics, 43, 179–186.CrossRefGoogle Scholar
  11. Boury, F., Marchais, H., Proust, J. E., & Benoit, J. P. (1997). Bovine serum albumin release from poly(alpha-hydroxy acid) microspheres: Effects of polymer molecular weight and surface properties. Journal of Controlled Release, 45, 75–86.CrossRefGoogle Scholar
  12. Brynko C, Bakan JA, Miller RE, Scarpelli JA (1967) US Patent 3,341466.Google Scholar
  13. Bungenberg de Jong, H. G. (1949). In H. R. Kruyt (Ed.), Colloid science (pp. 232–258). Amsterdam: Elsevier.Google Scholar
  14. Bungenberg de Jong, G., & Kruyt, H. (1929). Prog Kungl Ned Acad Wetensch, 32, 849–856.Google Scholar
  15. Cakhshaee, M., Pethrick, R. A., Rashid, H., & Sherrington, D. C. (1985). Polymer Communications, 26, 185–192.Google Scholar
  16. Chinnamuthu, C., & Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96, 17–31.Google Scholar
  17. Christou, P., McCabe, D. E., & Swain, W. F. (1988). Stable transformation of soybean callus by DNA coated au particles. Plant Physiology, 87, 671–674.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clemente, Z., Grillo, R., Jonsson, M., Santos, N. Z., Feitosa, L. O., & Lima, R. (2014). Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides. Journal of Nanoscience and Nanotechnology, 14, 4911–4917.CrossRefGoogle Scholar
  19. Cox, A., Venkatachalam, P., Sahi, S., & Sharma, N. (2017). Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiology and Biochemistry, 110, 33–49.  https://doi.org/10.1016/j.plaphy.2016.08.007.CrossRefPubMedGoogle Scholar
  20. Crotts, G., & Park, T. G. (1997). Stability and release of bovine serum albumin encapsulated within PLGA microparticles. Journal of Controlled Release, 44, 123–134.CrossRefGoogle Scholar
  21. Daroczi, B., Kari, G., McAleer, M. F., Wolf, J. C., Rodeck, U., & Dicker, A. P. (2006). In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebra fish model. Clinical Cancer Research, 12, 7086–7091.  https://doi.org/10.1158/1078-0432.CCR-06-0514.CrossRefPubMedGoogle Scholar
  22. de la Rosa, G., Lopez-Moreno, M. L., de Haro, D., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stcapsule: Root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry, 85(12), 2161–2174.CrossRefGoogle Scholar
  23. de Oliveira, J. L., Campos, E. V., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32, 1550–1561.  https://doi.org/10.1016/j.biotechadv.2014.10.010.CrossRefPubMedGoogle Scholar
  24. Desai, K. G., & Park, H. J. (2005). Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking capsulent on the properties of spray dried microspheres. Journal of Microencapsulation, 22, 377–395.CrossRefGoogle Scholar
  25. Dimkpa, C. O. (2014). Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? Journal of Basic Microbiology, 54, 889–904.  https://doi.org/10.1002/jobm.201400298.CrossRefPubMedGoogle Scholar
  26. Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y., et al. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110, 210–225.  https://doi.org/10.1016/j.plaphy.2016.04.024.CrossRefPubMedGoogle Scholar
  27. Fu, X., Ping, Q., & Gao, Y. (2005). Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. Journal of Microencapsulation, 22, 57–66.CrossRefGoogle Scholar
  28. Gao, F. Q., Hong, F. S., Liu, C., Zheng, L., & Su, M. Y. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco–rubisco activase. Biological Trace Element Research, 111, 286–301.CrossRefGoogle Scholar
  29. Ghorab, M. M., Zia, H., & Luzzi, L. A. (1990). Preparation of controlled release anticancer capsulents I: 5-fluorouracil-ethyl cellulose microspheres. Journal of Microencapsulation, 7, 447–454.CrossRefGoogle Scholar
  30. Ghosh, S. K. (2006). Functional coatings by polymer microencapsulation (pp. 221–258). Weinheim: WILEY-VCH.CrossRefGoogle Scholar
  31. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 400–408.  https://doi.org/10.1038/nmat3890.CrossRefPubMedGoogle Scholar
  32. Gopinath, K., Gowri, S., Karthika, V., & Arumugam, A. (2014). Green synthesis of au nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure in Chemistry, 4, 1–11.Google Scholar
  33. Gouin, S. (2004). Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15, 330–347.  https://doi.org/10.1038/nature.2015.17987.CrossRefGoogle Scholar
  34. Govorov, A. O., & Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano Letters, 7(3), 620–625.CrossRefGoogle Scholar
  35. Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16, 1231–1234.  https://doi.org/10.1016/j.tifs.2003.10.005.CrossRefPubMedGoogle Scholar
  36. Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., & Triffault-Bouchet, G. (2013). Interaction between sliver nanoparticles and plant growth. In International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory. Jeju, Korea: Greensys, 6–11 Oct 2013.Google Scholar
  37. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination.Google Scholar
  38. Heistand EN, Wagner JG, Knoechel EL. 1966. US Patent 3,242,051.Google Scholar
  39. Helaly, M. N., El-Metwally, M. A., El-Hoseiny, H., Omar, S. A., & El-Sheery, N. I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science, 8, 612–624.Google Scholar
  40. Hoffmann, M., Holtze, E. M., & andWiesner, M. R. (2007). Reactive oxygen species generation on nanoparticulate material. In MRWiesner & J. Y. Bottero (Eds.), Environmental nanotechnology. Applications and impacts of nanomaterials (pp. 155–203). New York: McGraw Hill.Google Scholar
  41. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1–3), 269–279.CrossRefGoogle Scholar
  42. Huang, Y.-I., Cheng, Y.-H., Yu, C.-C., Tsai, T.-R., & Cham, T.-M. (2007). Microencapsulation of extract containing shikonin using gelatin– Acacia coacervation method: A formaldehyde-free approach. Colloids and Surfaces. B, Biointerfaces, 58, 290–297.CrossRefGoogle Scholar
  43. Husen, A., & Siddiqi, K. S. (2014). Carbon and fullerene nanomaterials in plant system. Journal of Nanotechnology, 12, 1–10.Google Scholar
  44. Ikhtiar, R., Begum, P., Watari, F., & Fugetsu, B. (2013). Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca Sativa). Nano Biomed, 5, 18–24.Google Scholar
  45. Jaberzadeh, A., Moaveni, P., Moghadam, H. R. T., & Zahedi, H. (2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobo, 41, 201–207.CrossRefGoogle Scholar
  46. Jeyanthi, R., Mehta, R. C., Thanoo, B. C., & DeLuca, P. P. (1997). Effect of processing parameters on the properties of peptidecontaining PLGA microspheres. Journal of Microencapsulation, 14, 163–174.CrossRefGoogle Scholar
  47. Johansen, P., Men, Y., Audran, R., Corradin, G., Merkle, H. P., & Gander, B. (1998). Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharmaceutical Research, 15, 1103–1110.CrossRefGoogle Scholar
  48. Kah, M., & Hofmann, T. (2014). Nanopesticides research: Current trends and future priorities. Environment International, 63, 224–235.  https://doi.org/10.1016/j.envint.2013.11.015.CrossRefPubMedGoogle Scholar
  49. Kalteh, M., Alipour, Z. T., Ashraf, S., Aliabadi, M. M., & Nosratabadi, A. F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4, 49–55.Google Scholar
  50. Ke, P. C., Lin, S., Reppert, J., Rao, A. M., & Luo, H. (2011). Uptake of carbon-based nanoparticles by mammalian cells and plants. In K. D. Sattler (Ed.), Handbook of nanophysics: Nanomedicine and nanorobotics (pp. 1–30). New York: CRC Press.Google Scholar
  51. Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., Cernigla CE Khota, L. R., Sankarana, S., Majaa, J. M., Ehsania, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70.  https://doi.org/10.1016/j.cropro.2012.01.007.CrossRefGoogle Scholar
  52. Kim, H. K., & Park, T. G. (1999). Microencapsulation of human growth hormone within biodegradable polyester microspheres: Protein aggregation stability and incomplete release mechanism. Biotechnology and Bioengineering, 65, 659–667.CrossRefGoogle Scholar
  53. Klärner, G., et al. (1999). Cross-linkable Polymers Based on Dialkylfluorenes. Chemistry of Materials, 11, 1800–1805.CrossRefGoogle Scholar
  54. Kovochich, M., Xia, T., Xu, J., Yeh, J. I., & Nel, A. E. (2005). Principles and procedures to assess nanoparticles. Environmental Science & Technology, 39, 1250–1256.CrossRefGoogle Scholar
  55. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, 47, 651–658.CrossRefGoogle Scholar
  56. Kumar, V., Guleria, P., Kumar, V., & Yadav, S. K. (2013). Au nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment, 461, 462–468.CrossRefGoogle Scholar
  57. Kumar, S., Bhanjana, G., Sharma, A., Sarita, S. M. C., & Dilbaghi, N. (2015). Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology. Science of Advanced Materials, 7, 1143–1148.CrossRefGoogle Scholar
  58. Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., & Khodakovskaya, M. V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & Interfaces, 5, 7965–7973.CrossRefGoogle Scholar
  59. Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., Xiaoqing, L., Fan, Y., Fengqing, G., & Fashui, H. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68–76.CrossRefGoogle Scholar
  60. Li, W.-I., Anderson, K. W., Mehta, R. C., & DeLuca, P. P. (1995). Prediction of solvent removal profile and effect on properties for peptide-loaded PLGA microspheres prepared by solvent extraction/evaporation method. Journal of Controlled Release, 37, 199–214.CrossRefGoogle Scholar
  61. Li, X., Deng, X., Yuan, M., Xiong, C., Huang, Z., Zhang, Y., & Jia, W. (1999). Investigation on process parameters involved in preparation of polylactide-poly(ethylene glycol) microspheres containing Leptospira Interrogans antigens. International Journal of Pharmaceutics, 178, 245–255.CrossRefGoogle Scholar
  62. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.CrossRefGoogle Scholar
  63. Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. J., & Hanson, M. R. (2014). A faster Rubisco with potential to increase photosynthesis in crops. Nature, 513, 547–550.  https://doi.org/10.1038/nature13776.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ma, L., Liu, C., Qu, C., Yin, S., Liu, J., Gao, F., & Hong, F. (2008). Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment. Biological Trace Element Research, 122(2), 168–178.CrossRefGoogle Scholar
  65. Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011, 1–7.  https://doi.org/10.1155/2011/696535.CrossRefGoogle Scholar
  66. Mahmoodzadeh, H., Nabavi, M., & Kashefi, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental Hortic Plants, 3, 25–32.Google Scholar
  67. Mehta, R. C., Jeyanthi, R., Calis, S., Thanoo, B. C., Burton, K. W., & DeLuca, P. P. (1994). Biodegradable microspheres as depot system for parenteral delivery of peptide drugs. Journal of Controlled Release, 29, 375–384.CrossRefGoogle Scholar
  68. Mehta, R. C., Thanoo, B. C., & DeLuca, P. P. (1996). Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactideco- glycolide). Journal of Controlled Release, 41, 249–257.CrossRefGoogle Scholar
  69. Morla, S., Ramachandra Rao, C. S. V., & Chakrapani, R. (2011). Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. Journal of Chemical, Biological and Physical Sciences B, 1, 328–334.Google Scholar
  70. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163.CrossRefGoogle Scholar
  71. Nalwade, A. R., & Neharkar, S. B. (2013). Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. International Journal of Advanced Scientific and Technical Research, 3, 840–846.Google Scholar
  72. Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011).Google Scholar
  73. Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. The Journal of Agricultural and Food Chemistry, 64, 1447–1483.  https://doi.org/10.1021/acs.jafc.5b05214.CrossRefPubMedGoogle Scholar
  74. Park, T. G., Lee, H. Y., & Nam, Y. S. (1998). A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. Journal of Controlled Release, 55, 181–191.CrossRefGoogle Scholar
  75. Patra, J. K., & Baek, K.-H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology, 8, 167.  https://doi.org/10.3389/fmicb.2017.00167.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pérez-de-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65, 540–545.CrossRefGoogle Scholar
  77. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S. P., Sajanlal, R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927.CrossRefGoogle Scholar
  78. Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.  https://doi.org/10.3389/fmicb.2017.01014.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156(1–3), 323–328.CrossRefGoogle Scholar
  80. Rafati, H., Coombes, A. G. A., Adler, J., Holland, J., & Davis, S. S. (1997). Protein-loaded PLGA microparticles for oral administration: Formulation, structural and release characteristics. Journal of Controlled Release, 43, 89–102.CrossRefGoogle Scholar
  81. Rainer, A., & Bodmeier, R. (1990). Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. Journal of Microencapsulation, 7, 347–355.CrossRefGoogle Scholar
  82. Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetrsilveronoloba L.). Agricultural Research, 2, 48–57.CrossRefGoogle Scholar
  83. Ramesh, M., Palanisamy, K., Babu, K., & Sharma, N. K. (2014). Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. Journal of Global Biosciences, 3, 415–422.Google Scholar
  84. Rana, S., & Kalaichelvan, P. T. (2011). Antibacterial effects of metal nanoparticles. Advanced Biotech, 2, 21–23.Google Scholar
  85. Rana, S., & Kalaichelvan, P. T. (2013). Ecotoxicity of nanoparticles. ISRN Toxicology, 2013, 574648.  https://doi.org/10.1155/2013/574648.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Raskar, S. V., & Laware, S. L. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3(2), 467–473.Google Scholar
  87. Rezvani, N., Sorooshzadeh, A., & Farhadi, N. (2012). Effect of nano-silver on growth of saffron in flooding stress. World Academy of Science, Engineering and Technology, 1, 517–522.Google Scholar
  88. Sah, H. (1997). Microencapsulation techniques using ethyl acetate as a dispersed solvent: Effects of its extraction rate on the characteristics of PLGA microspheres. Journal of Controlled Release, 47, 233–245.CrossRefGoogle Scholar
  89. Saihi, D., Vroman, I., Giraud, S., & Bourbigot, S. (2006). Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. Reactive Functional Polymer, 66, 1118–1125.CrossRefGoogle Scholar
  90. Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3(10), 190–197.Google Scholar
  91. Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., & Boparai, H. (2008). Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water, Air, & Soil Pollution, 192, 349–359.CrossRefGoogle Scholar
  92. Savithramma, N., Ankanna, S., & Bhumi, G. (2012). Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision, 2, 61–68.Google Scholar
  93. Sayes, C. M., Fortner, J. D., Guo, W., Lyon, D., Boyd, A. M., Ausman, K. D., Tao, Y. J., et al. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881–1887.  https://doi.org/10.1002/btpr.707.CrossRefGoogle Scholar
  94. Scher, H. B. (1983). In J. Miyamoto & P. C. Kearny (Eds.), Pesticide chemistry—Human welfare and environment (Vol. 4, pp. 295–300). Oxford: Pergamon press.CrossRefGoogle Scholar
  95. Schlicher, E. J. A. M., Postma, N. S., Zuidema, J., Talsma, H., & Hennink, W. E. (1997). Preparation and characterization of poly(D,L-lactic-co-glycolic acid) microspheres containing desferrioxamine. International Journal of Pharmaceutics, 153, 235–245.CrossRefGoogle Scholar
  96. Sedghi, M., Hadi, M., & Toluie, S. G. (2013). Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timisoara ser Biol XVI, 2, 73–78.Google Scholar
  97. Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution, 197, 143–148.CrossRefGoogle Scholar
  98. Sharma, P., Bhatt, D., Zaidi, M. G., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.CrossRefGoogle Scholar
  99. Shweta, Tripathi, D. K., Singh, S., Singh, S., Dubey, N. K., & Chauhan, D. K. (2016). Impact of nanoparticles on photosynthesis: challenges and opportunities. Materials Focus, 5, 405–411.  https://doi.org/10.1166/mat.2016.1327.
  100. Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-silicon dioxide in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21, 13–17.CrossRefGoogle Scholar
  101. Siddiqui, M. H., et al. (Eds.). (2015). Nanotechnology and plant sciences. Switzerland: Springer.  https://doi.org/10.1007/978-3-319-14502-0_2.CrossRefGoogle Scholar
  102. Singh, S., Vishwakarma, K., Singh, S., Sharma, S., Dubey, N. K., Singh, V. K., et al. (2017). Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview. Plant Gene, 11, 265–272.  https://doi.org/10.1016/j.plgene.2017.03.006.CrossRefGoogle Scholar
  103. Srinivasan, C., & Saraswathi, R. (2010). Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Current Science, 99, 273–275.Google Scholar
  104. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Current Nanoscience, 8, 902–908.CrossRefGoogle Scholar
  105. Syu, Y. Y., Hung, J. H., Chen, J. C., & Chuang, H. W. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64.CrossRefGoogle Scholar
  106. Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L. M., Villegas, J., Carreto-Montoya, L., & Borjas-García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nanoagriculture. Applied Nanoscience, 4, 577–591.CrossRefGoogle Scholar
  107. Tripathi, S., & Sarkar, S. (2014). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5, 609–616.  https://doi.org/10.1007/s13204-014-0355-9.CrossRefGoogle Scholar
  108. Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., et al. (2017a). Nitric oxide alleviates silver nanoparticles (SilverNanoparticles)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 110, 167–177.  https://doi.org/10.1016/j.plaphy.2016.06.015.CrossRefPubMedGoogle Scholar
  109. Tripathi, D. K., Tripathi, A., Shweta, S. S., Singh, Y., Vishwakarma, K., Yadav, G., et al. (2017b). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Frontiers in Microbiology, 8, 07.  https://doi.org/10.3389/fmicb.2017.00007.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., et al. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology, 171, 1142–1148.  https://doi.org/10.1016/j.jplph.2014.05.002.CrossRefPubMedGoogle Scholar
  111. Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., et al. (2017). Zinc oxide nanoparticles (ZnONanoparticles) alleviate heavy metal induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59–69.  https://doi.org/10.1016/j.plaphy.2016.08.022.CrossRefPubMedGoogle Scholar
  112. Walter, E., Dreher, D., Kok, M., Thiele, L., Kiama, S. G., Gehr, P., & Merkle, H. P. (2001). Hydrophilic poly(D,L-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophcapsules and dendritic cells. Journal of Controlled Release, 76, 149–168.CrossRefGoogle Scholar
  113. Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 14(6), 1–10.CrossRefGoogle Scholar
  114. Wang, S. H., Gao, S. C., Xu, H. W., Zhang, H. X., & Chang, H. Q. (2013). Effects of exogenous nanometer silicon on expression of γ-ECS gene in rice seedlings under cd stress. Southwest China Journal of Agricultural Science, 3, 850–853, Article number: 1001-4829(2013)03-0850-04.Google Scholar
  115. Wang, A., Zheng, Y., & Peng, F. (2014). Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. Journal of Spectroscopy, 2014, 1–5.Google Scholar
  116. Wurster, D. E. (1953). US Patent 2648609Google Scholar
  117. Xie, Y., Li, B., Zhang, Q., Zhang, C., Lu, K., & Tao, G. (2011). Effects of nano-TiO2 on photosynthetic characteristics of Indocalamus barbatus. Journal of Northeast Forestry University, 39, 22–25.Google Scholar
  118. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158, 122–132.  https://doi.org/10.1016/j.toxlet.2005.03.003.CrossRefPubMedGoogle Scholar
  119. Yang, Y.-Y., Chia, H.-H., & Chung, T.-S. (2000). Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double emulsion solvent extraction/evaporation method. Journal of Controlled Release, 69, 81–96.CrossRefGoogle Scholar
  120. Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179–190.CrossRefGoogle Scholar
  121. Yin, X., & Stöver, H. D. H. (2003). Hydrogel microspheres formed by complex coacervation of partially MPEG-grafted poly(styrene-alt-maleic anhydride) with PDADMAC and cross-linking with polyamines. Macromolecules, 36, 8773–8779.CrossRefGoogle Scholar
  122. Yin, L., Colman, B. P., McGill, B. M., Wright, J. P., & Bernhardt, E. S. (2012). Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One, 7, 1–7.CrossRefGoogle Scholar
  123. Zhang, Q., Han, L., Jing, H., Blom, D. A., Lin, Y., Xin, H. L., et al. (2016). Facet control of au nanorods. ACS Nano, 10, 2960–2974.  https://doi.org/10.1021/acsnano.6b00258.CrossRefPubMedGoogle Scholar
  124. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally capsuled seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations