Advertisement

Soil Health and Food Security

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem
Chapter

Abstract

Food security is a flexible concept as reflected in the many attempts at definition in research and policy usage. One more crucially important, factor in modifying views of food security was the evidence that the technical successes of the Green Revolution did not automatically and rapidly lead to dramatic reductions in poverty and levels of malnutrition. The forecast of 2050 global crop demand and then quantitatively evaluate the global impacts on land clearing, nitrogen fertilizer use, and GHG release of alternative approaches by which this global crop demand might be achieved. The role of soil microbial community for improving plant growth and development for keeping the pace with the global food demand and sustainable agriculture is documented here. A general perception about genetic engineering and public intervene and sustainable agricultural intensifications and food production is discussed in the preceding sections.

Keywords

Food demand Security Genetic engineering Plant growth agriculture 

References

  1. Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929.  https://doi.org/10.1007/s00248-009-9531-y.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antolin-Llovera, M. A., Ried, M. K., Binder, A., & Parniske, M. (2012). Receptor kinase signaling pathways in plant-microbe interactions. Annual Review of Phytopathology, 50, 451–473.  https://doi.org/10.1146/annurev-phyto-081211-173002.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asaah, E. K., Tchoundjeu, Z., Leakey, R. R. B., Takousting, B., Njong, J., & Edang, I. (2011). Trees, agroforestry and multifunctional agriculture in Cameroon. International Journal of Agricultural Sustainability, 9, 110–119.CrossRefGoogle Scholar
  4. Atieno, M., Herrmann, L., Okalebo, R., & Lesueur, D. (2012). Efficiency of different formulations of Bradyrhizobium japonicum and effect of coinoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28, 2541–2550.  https://doi.org/10.1007/s11274-012-1062-x.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. The New Phytologist, 198, 264–273.  https://doi.org/10.1111/nph.12124.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbe interactions. Journal of Soil Science and Plant Nutrition, 15, 261–282.  https://doi.org/10.4067/S0718-95162015005000021.CrossRefGoogle Scholar
  7. Beck, U. (1986). Risikogesellschaft. Auf dem Weg in eine andere Moderne. Frankfurt am Main: Suhrkamp.Google Scholar
  8. Brosius, F. (1998). SPSS 8. Professionelle Statistik unter Windows. Bonn: MITP.Google Scholar
  9. Brummett, R. E., & Jamu, D. M. (2011). From researcher to farmer: Partnerships in integrated aquaculture–agriculture systems in Malawi and Cameroon. International Journal of Agricultural Sustainability, 9, 282–289.CrossRefGoogle Scholar
  10. Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 107, 12052–12057.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen, C., McIver, J., Yang, Y., Bai, Y., Schultz, B., & McIver, A. (2007). Foliar applicationoflipo-chitooligosaccharides(Nodfactors)totomato(Lycopersicon esculentum) enhancesfloweringandfruitproduction. Canadian Journal of Plant Science, 87, 365–372.  https://doi.org/10.4141/P06-164.CrossRefGoogle Scholar
  12. Chen, X. P., et al. (2011). Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 108, 6399–6404.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Compant, S., Clement, C., & Sessitsch, A. (2010a). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024.CrossRefGoogle Scholar
  14. Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010b). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73, 197–214.  https://doi.org/10.1111/j.1574-6941.2010.00900.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Conway, G. (1997a). The doubly green revolution. London: Penguin.Google Scholar
  16. Conway, G. (1997b). The doubly green revolution: Food for all in the 21st century. Harmondsworth: Penguin.Google Scholar
  17. Conway, G. R., & Barbier, E. B. (1990). After the green revolution. Sustainable agriculture for development. London: Earthscan.Google Scholar
  18. Cretoiu, M. S., Korthals, G. W., Visser, J. H. M., & van Elsas, J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Applied and Environmental Microbiology, 17, 5291–5301.  https://doi.org/10.1128/AEM.01361-13.CrossRefGoogle Scholar
  19. De Schutter, O., & Vanloqueren, G. (2011). The new green revolution: How twenty-first-century science can feed the world. Solutions, 2, 33–44.Google Scholar
  20. DEFRA (Department for Environment, Food and Rural Affairs). (2012). Green food project conclusions. London: DEFRA.Google Scholar
  21. Desbrosses, G. J., & Stougaard, J. (2011). Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host & Microbe, 10, 348–358.  https://doi.org/10.1016/j.chom.2011.09.005.CrossRefGoogle Scholar
  22. Dirzo, R., & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137–167.CrossRefGoogle Scholar
  23. Dong, Z., Canny, M. J., McCully, M. E., Roboredo, M. R., Cabadilla, C. F., Ortega, E., et al. (1994). A nitrogen-fixing endophyte of sugarcane stems’. A new role for the apoplast. Plant Physiology, 105, 1139–1147.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dorward, A., & Chirwa, E. (2011). The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. International Journal of Agricultural Sustainability, 9, 232–247.CrossRefGoogle Scholar
  25. Dreze, J., & Sen, A. (1989). Hunger und Public Aclion. Oxford: Clarendon Press.Google Scholar
  26. Drogue, B., Doré, H., Borland, S., Wisniewski-Dyé, F., & PrigentCombaret, C. (2012). Which specificity in cooperation between phytostimulating rhizobacteria and plants? Research in Microbiology, 163, 500–510.  https://doi.org/10.1016/j.resmic.2012.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dyachok, J., Wiweger, M., Kenne, L., & andvonArnold, S. (2002). Endogenousnod- factor-likesignalmoleculespromoteearlysomaticembryodevelopment inNorwayspruce. Plant Physiology, 128, 523–533.  https://doi.org/10.1104/pp.010547.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Elliot, J., Firbank, L. G., Drake, B., Cao, Y., & Gooday, R. (2013). Exploring the concept of sustainable intensification. http://www.snh.gov.uk/docs/A931058.pdf. (31 August 2014).
  29. Engelmoer, D. J. P., Behm, J. E., & Kiers, E. T. (2014). Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology, 23, 1584–1593.  https://doi.org/10.1111/mec.12451.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Estévez, J., SoriaDíaz, M. E., FernándezdeCórdoba, F., Móron, B., Manyan, H., Gil, A., et al. (2009). DifferentandnewNodfactorsproducedby Rhizobium tropici CIAT899followingNastress. FEMS Microbiology Letters, 293, 220–231.  https://doi.org/10.1111/j.1574-6968.2009.01540.x.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Evangelisti, E., Rey, T., & Schornack, S. (2014). Cross-interference of plant development and plant–microbe interactions. Current Opinion in Plant Biology, 20, 118–126.  https://doi.org/10.1016/j.pbi.2014.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  32. FAO. (1983). World food security: A reappraisal of the concepts and approaches. Rome: Director Generals Report.Google Scholar
  33. FAO. (1996). Rome declaration on world food security. Rome: FAO.Google Scholar
  34. FAO. (2002). Factsheet on food quality and safety. Rome: FAO.Google Scholar
  35. FAO. (2011). Save and grow: A policymaker’s guide to the sustainable intensification of smallholder crop production. Rome: FAO.Google Scholar
  36. FAO. (2013). Climate-smart agriculture sourcebook. Rome: FAO.Google Scholar
  37. Foley, J. A., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Foresight. (2011). The future of global food and farming. Final project report. London: Government Office for Science London.Google Scholar
  39. Friis-Hansen, E. (2012). The empowerment route to well-being: An analysis of farmer field schools in East Africa. World Development, 40, 414–427.CrossRefGoogle Scholar
  40. Gaiero, J. R., Mccall, C. A., Thompson, K. A., Day, N. J., Best, A. S., & Dunfield, K. E. (2013). Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany, 100, 1738–1750.  https://doi.org/10.3732/ajb.1200572.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Garnett, T., & Godfray, C. H. (2012). Sustainable intensification in agriculture: Navigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin Programme on the Future of Food, University of Oxford, UK.Google Scholar
  42. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., et al. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2, 197–214.CrossRefGoogle Scholar
  43. Gaskell, G., Bauer, M., & Durant, J. (1998). Public perceptions of biotechnology in 1996 Eurobarometer 46.1. In J. Durant, M. Bauer, & G. Gaskell (Eds.), Biotechnology in the public sphere. A European sourcebook (pp. 189–214). London: Science Museum.Google Scholar
  44. Gittinger, J. P., Leslie, J., & Hoisington, C. (Eds.). (1987). Food policy: Integrating supply, distribution and consumption (EDI series in economic development). Baltimore: Johns Hopkins University Press.Google Scholar
  45. Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gough, C., & Cullimore, J. (2011). Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Molecular Plant-Microbe Interactions, 8, 867–878.  https://doi.org/10.1094/MPMI-01-11-0019.CrossRefGoogle Scholar
  47. Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412.  https://doi.org/10.1016/j.soilbio.2004.08.030.CrossRefGoogle Scholar
  48. Guasch-Vidal, B., Estévez, J., Dardanelli, M. S., Soria-Díaz, M. E., de Córdoba, F. F., Balog, C. I., et al. (2013). HighNaClconcentrationsinducethenodgenesof Rhizobiumtropici CIAT899intheabsenceofflavonoidinducers. Molecular Plant-Microbe Interactions, 26, 451–460.  https://doi.org/10.1094/MPMI-09-12-0213-R.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Habermas, J. (1969). Technik und Wissenschaft als Ideologie. Frankfurt am Main: Suhrkamp.Google Scholar
  50. Hampel, J., & Renn, O. (Eds.). (1999). Gentechnik in der Öffentlichkeit. Wahrnehmung und Bewertungeiner umstrittenen Technologie. Frankfurt am Main/New York: Campus.Google Scholar
  51. Hartmann, A., Rothballer, M., Hense, B. A., & Schröder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science, 5, 131.  https://doi.org/10.3389/fpls.2014.00131.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hassan, S., & Mathesius, U. (2012). The role of flavonoids in root– Rhizosphere signalling: Opportunities and challenges for improving plant– Microbe interactions. Journal of Experimental Botany, 9, 3429–3444.  https://doi.org/10.1093/jxb/err430.CrossRefGoogle Scholar
  53. He, Z., Piceno, Y., Deng, Y., Xu, M., Lu, Z., DeSantis, T., et al. (2012). The phylogenic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. The International Society for Microbial Ecology, 6, 259–272.  https://doi.org/10.1038/ismej.2011.99.CrossRefGoogle Scholar
  54. Holt-Giménez, E., & Altieri, M. A. (2013). Agroecology, food sovereignty, and the new green revolution. Agroecology and Sustainable Food Systems, 37, 90–102.CrossRefGoogle Scholar
  55. Horlings, L. G., & Marsden, T. K. (2011). Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Global Environmental Change, 21, 441–452.CrossRefGoogle Scholar
  56. IAASTD. (2009). Agriculture at a crossroads. International assessment of agricultural knowledge, science and technology for development. Washington, DC: Island Press.Google Scholar
  57. IFAD and UNEP. (2013). Smallholders, food security, and the environment. Rome: International Fund for Agricultural Development.Google Scholar
  58. Jacobsen, S., Sørensen, M., Pedersen, S. M., & Weiner, J. (2013). Feeding the world: Genetically modified crops versus agricultural biodiversity. Agronomy for Sustainable Development, 33, 651–662.CrossRefGoogle Scholar
  59. Jung, W. J., Mabood, F., Souleimanov, A., Park, R. D., & Smith, D. L. (2008). Chitinases produced by Paenibacillus illinoisensis and Bacillus thuringensis subsp. pakistani degrade Nod factor from Bradyrhizobium japonicum. Microbiological Research, 163, 345–349.  https://doi.org/10.1016/j.micres.2006.06.013.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: Justification, spread and uptake. International Journal of Agricultural Sustainability, 7, 292–320.CrossRefGoogle Scholar
  61. Keyzer, M. A., Merbis, M. D., Pavel, I. F. P. W., & van Wesenbeeck, C. F. A. (2005). Diet shifts towardsmeat and the effects on cereal use: Can we feed the animals in 2030? Ecological Economics, 55, 187–202.CrossRefGoogle Scholar
  62. Khan, Z., Midega, C., Pittchar, J., Pickett, J., & Bruce, T. (2011). Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. International Journal of Agricultural Sustainability, 9, 162–170.CrossRefGoogle Scholar
  63. Lakshmanan, V., Kitto, S. L., Caplan, J. L., Hsueh, Y.-H., Kearns, D. B., Wu, Y.-S., et al. (2012). Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 160, 1642–1661.  https://doi.org/10.1104/pp.112.200386.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lang, T., & Barling, D. (2012). Food security and food sustainability: Reformulating the debate. Geographical Journal, 178, 313–326.CrossRefGoogle Scholar
  65. Lebeis, S. L. (2015). Greater than the sum of their parts: Characterizing plant microbiomes at the community level. Current Opinion in Plant Biology, 24, 82–86.  https://doi.org/10.1016/j.pbi.2015.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee, K. D., Gray, E. J., Mabood, F., Jung, W. J., Charles, T., Clark, S. R. D., et al. (2009). The class IId bacteriocin thuricin 17 increases plant growth. Planta, 229, 747–755.  https://doi.org/10.1007/s00425-008-0870-6.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lucas, C. (2011). Oral evidence taken before the environmental audit committee on sustainable food. 11 May 2011. http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenvaud/c879-i/c87901.htm (31 August 2014).
  68. Lv, D., Ma, A., Tang, X., Bai, Z., Qi, H., & Zhuang, G. (2013). Profile of the culturable microbiome capable of producing acyl-homoserine lactone in the tobacco phyllosphere. Journal of Environmental Sciences, 25, 357–366.  https://doi.org/10.1016/S1001-0742(12)60027-8.CrossRefGoogle Scholar
  69. Mabood, F., Zhou, X., Lee, K. D., & Smith, D. L. (2006). Methyl jasmonate, alone or in combination with genistein, and Bradyrhizobium japonicum increases soybean (Glycine max L.) plant dry matter production and grain yield under short season conditions. Field Crops Research, 95, 412–419.  https://doi.org/10.1016/j.fcr.2005.04.013.CrossRefGoogle Scholar
  70. Mabood, F., Zhou, X., & Smith, D. L. (2014). Microbial signaling and plant growth promotion. Canadian Journal of Plant Science, 94, 1051–1063.  https://doi.org/10.4141/cjps2013-148.CrossRefGoogle Scholar
  71. Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiological Research, 169, 609–615.  https://doi.org/10.1016/j.micres.2013.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Maxwell, O. (1995). Land, labor. Food, and farming: A household analysis of urban agriculture in Kampala. Uganda, Ph.D., dissertation, University of Wisconsin-Madison.Google Scholar
  73. Maxwell, S., & Smith, M. (1992). Household food security: A conceptual review. Mimeo: Institute of Development Studies, University of Sussex.Google Scholar
  74. Mengual, C., Schoebitz, M., Azcón, R., & Roldán, A. (2014). Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. Journal of Environmental Management, 134, 1–7.  https://doi.org/10.1016/j.jenvman.2014.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Milder, J. C., Garbach, K., DeClerck, F. A. J., Driscoll, L., & Montenegro, M. (2012). An assessment of the multi-functionality of agroecological intensification. A report prepared for the Bill & Melinda Gates Foundation.Google Scholar
  76. Muhanji, G., Roothaert, R. L., Webo, C., & Stanley, M. (2011). African indigenous vegetable enterprises and market access for small-scale farmers in East Africa. International Journal of Agricultural Sustainability, 9, 194–202.CrossRefGoogle Scholar
  77. Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3.  https://doi.org/10.1094/CM-2004-0301-05-RV.
  78. Norse, D. (2012). Low carbon agriculture: Objectives and policy pathways. Environmental Development, 1, 25–39.CrossRefGoogle Scholar
  79. NRC. (1989). Alternative agriculture. Washington, DC: National Academies Press.Google Scholar
  80. NRC. (2010). Towards sustainable agricultural systems in the 21st century. Committee on twenty-first century systems agriculture. Washington, DC: National Academies Press.Google Scholar
  81. Oláh, B., Brière, C., Bécard, G., Dénarié, J., & Gough, C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal, 44, 195–207.  https://doi.org/10.1111/j.1365-313X.2005.02522.x.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Oldroyd, G. E. D. (2013). Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews. Microbiology, 11, 252–263.  https://doi.org/10.1038/nrmicro2990.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Orrell, P., & Bennett, A. E. (2013). How can we exploit above-belowground interactions to assist in addressing the challenges of food security? Frontiers in Plant Science, 4, 432.  https://doi.org/10.3389/fpls.2013.00432.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Peters, H. P. (1999). Das Bedu¨ rfnis nach Kontrolle der Gentechnik und das Vertrauen in wissenschaftliche Experten. In J. Hampel & O. Renn (Eds.), Gentechnik in der Öffentlichkeit. Wahrnehmung und Bewertung einer umstrittenen Technologie (pp. 225–245). Frankfurt am Main/New York: Campus.Google Scholar
  85. Pisa, G., Magnani, G. S., Weber, H., Souza, E. M., Faoro, H., Monteiro, R. A., et al. (2011). Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Brazilian Journal of Medical and Biological Research, 44, 1215–1221.  https://doi.org/10.1590/S0100-879X2011007500148.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Poleman, T. T., & Thomas, L. T. (1995). Income and dietary change: International comparisonsusing purchasing-power parity conversions. Food Policy, 20, 149–159.CrossRefGoogle Scholar
  87. Pretty, J. (1997). The sustainable intensification of agriculture. Natural Resources Forum, 21, 247–256.CrossRefGoogle Scholar
  88. Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Science, 363, 447–466.CrossRefGoogle Scholar
  89. Pretty, J., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T., & Morison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science & Technology, 3, 24–43.Google Scholar
  90. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9, 5–24.CrossRefGoogle Scholar
  91. Pretty, J., Bharucha, Z. P., & Hama Garba, M. et al. (2014). Foresight and African agriculture: Innovations and policy opportunities. Report to the UK Government Foresight Project. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/300277/14-533-future-african-agriculture.pdf. (31 August 2014).
  92. Prudent, M., Salon, C., Souleimanov, A., Emery, R. J. N., & Smith, D. L. (2015). Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agronomy for Sustainable Development, 35, 749–757.  https://doi.org/10.1007/s13593-014-0256-z.CrossRefGoogle Scholar
  93. Quecine, M. C., Araújo, W. L., Rossetto, P. B., Ferreira, A., Tsui, S., Lacava, P. T., et al. (2012). Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Applied and Environmental Microbiology, 78, 7511–7518.  https://doi.org/10.1128/AEM.00836-12.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rayner, S. (1992). Cultural theory and risk analysis. In S. Krimsky & D. Golding (Eds.), Social theories of risk (pp. 83–116). Westport: Praeger.Google Scholar
  95. Reutlinger, S. (1985). Food security and poverty in LDCs. Finance and Development, 22(4), 7–11.Google Scholar
  96. Roothaert, R. L., & Magado, R. (2011). Revival of cassava production in Nakasongola District, Uganda. International Journal of Agricultural Sustainability, 9, 76–81.CrossRefGoogle Scholar
  97. Roothaert, R. L., Ssalongo, S., & Fulgensio, J. (2011). The Rakai chicken model: An approach that has improved fortunes for Ugandan farmers. International Journal of Agricultural Sustainability, 9, 222–231.CrossRefGoogle Scholar
  98. Rose, C. M., Venkateshwaren, M., Volkening, J. D., Grimsrud, P. A., Maeda, J., Bailey, D. J., et al. (2012). Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Molecular & Cellular Proteomics, 11, 724–744.  https://doi.org/10.1074/mcp.M112.019208.CrossRefGoogle Scholar
  99. Rosset, P. M., & Martínez-Torres, M. E. (2012). Rural social movements and agroecology: Context, theory, and process. Ecology and Society, 17, 17.CrossRefGoogle Scholar
  100. Royal Society. (2009). Reaping the benefits: Science and the sustainable intensification of global agriculture. London: The Royal Society.Google Scholar
  101. Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547–1556.  https://doi.org/10.1104/pp.108.127613.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ruiz-Lozano, J. M., Porcel, R., Azcon, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 11, 4033–4044.  https://doi.org/10.1093/jxb/ers126.CrossRefGoogle Scholar
  103. Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111, 743–767.  https://doi.org/10.1093/aob/mct048.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sawadogo, H. (2011). Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Sustainable Agriculture, 9, 120–128.CrossRefGoogle Scholar
  105. Schmidt, R., Köberl, M., Mostafa, A., Ramadan, E. M., Monschein, M., Jensen, K. B., et al. (2014). Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers in Microbiology, 64, 111.  https://doi.org/10.3389/fmicb.2014.00064.CrossRefGoogle Scholar
  106. Sen, A. (1981). Poverty and famines: An essay on entitlement and Deprivution. Oxford: Clarendon Press.Google Scholar
  107. Settle, W., & Hama Garba, M. (2011). Sustainable crop production intensification in the Senegal and Niger River basins of francophone West Africa. International Journal of Agricultural Sustainability, 9, 171–185.CrossRefGoogle Scholar
  108. Smil, V. (2002). Nitrogen and food production: Proteins for human diets. Ambio, 31, 126–131.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Smith, P. (2013). Delivering food security without increasing pressure on land. Global Food Security, 2, 18–23.CrossRefGoogle Scholar
  110. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings ofthe National Academy of Sciences, USA107: 20840–20845.Google Scholar
  111. Spence, C., Alff, E., Johnson, C., Ramos, C., Donofrio, N., Sundarsan, V., et al. (2014). Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology, 14, 130.  https://doi.org/10.1186/1471-2229-14-130.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Stock, P., Carolan, M., & Rosin, C. (Eds.). (2015). Food utopias: Reimagining citizenship, ethics and community. New York: Routledge. (in press).Google Scholar
  113. Subramanian, S. (2014). Mass spectrometry based proteome profiling to understand the effects of Lipo-Chitooligosaccharide and Thuricin 17 in Arabidopsis thaliana and Glycinemax under salt stress. Ph.D. Thesis, McGillUniversity, Montréal, QC.Google Scholar
  114. Sumberg, J., Thompson, J., & Woodhouse, P. (2013). Why agronomy in the developing world has become contentious. Agriculture and Human Values, 30, 71–83.CrossRefGoogle Scholar
  115. Tena, G., Boudsocq, M., & Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14, 519–529.  https://doi.org/10.1016/j.pbi.2011.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Teplitski, M., Robinson, J. B., & Bauer, W. D. (2000). Plants secrete substances that mimic bacterial N-Acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 6, 637–648.  https://doi.org/10.1094/MPMI.2000.13.6.637.CrossRefGoogle Scholar
  117. Thompson, B., & Amoroso, L. (2011). FAO’s approach to nutrition-sensitive agricultural development. Rome: FAO http://www.fao.org/fileadmin/user_upload/agn/pdf/FAO_Approach_to_Nutrition_sensitive_agricultural_development.pdf (31st Aug 2014).
  118. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Tomlinson, I. (2013). Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. Journal of Rural Studies, 29, 81–90.CrossRefGoogle Scholar
  120. Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, 1, 13.  https://doi.org/10.1155/2013/863240.CrossRefGoogle Scholar
  121. Tripp, R. (2005). The performance of low external input technology in agricultural development: A summary of three case studies. International Journal of Agricultural Sustainability, 3, 143–153.CrossRefGoogle Scholar
  122. United Nations. (1975). Report of the world food conference, Rome 5–16 November 1974. New York.Google Scholar
  123. Velázquez, E., Rojas, M., Lorite, M. J., Rivas, R., Zurdo-Piñeiro, J. L., Heydrich, M., et al. (2008). Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchyma of the stem of healthy sugarcane plants. Journal of Basic Microbiology, 48, 118–124.  https://doi.org/10.1002/jobm.200700161.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Vitousek, P. M., et al. (1997). Human alteration of the global nitrogen cycle. Ecological Applications, 7, 737–750.Google Scholar
  125. Wambugu, C., Place, F., & Franzel, S. (2011). Research, development and scaling-up the adoption of fodder shrub innovations in East Africa. International Journal of Agricultural Sustainability, 9, 100–109.CrossRefGoogle Scholar
  126. Wang, N., Khan, W., & Smith, D. L. (2012). Soybean global gene expression after application of lipo-chitoo ligosaccharide from Bradyrhizobium japonicum undersub-optimaltemperature. PLoSONE, 7, e31571.  https://doi.org/10.1371/journal.pone.0031571.CrossRefGoogle Scholar
  127. Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., & Pieterse, C. M. J. (2013). Unraveling root developmental programs initiated by beneficial pseudomonas spp. Bacteria. Plant Physiology, 162, 304–318.  https://doi.org/10.1104/pp.112.212597.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zapf, W., et al. (1987). Individualisierung und Sicherheit. Untersuchungen zur Lebensqualita¨ t in der Bundesrepublik Deutschland. Munich: C.H. Beck.Google Scholar
  129. Zhang, F., & Smith, D. L. (1995). Preincubation of Brady rhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiology, 108, 961–986.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhang, H., Gao, Z.-Q., Wang, W.-J., Liu, G.-F., Shtykova, E. V., Xu, J.-H., et al. (2012). The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6. FEBS Letters, 586, 1147–1153.  https://doi.org/10.1016/j.febslet.2012.03.029.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1–9.  https://doi.org/10.1016/j.apsoil.2013.03.007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations