Advertisement

Stress Management: Sustainable Approach Towards Resilient Agriculture

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem
Chapter

Abstract

The improvement of crop performance by increasing osmotic potential-adjusting ability is more significant in roots than other plant parts to avert stress. The role of osmotic adjustment in root elongating zone is to maintain turgor pressure to continue root elongation and root growth in drying soils, which enable the plant to maintain its transpiration by exploiting a greater volume of soil or utilize available water in a given soil volume more efficiently. In this chapter the various tolerance mechanism and diversity among the plants to combat is documented with numerous illustrations. In this last section role of plant metabolites for abiotic stress management is detailed out.

Keywords

Stress Metabolites Tolerance Abiotic Salt Drought 

References

  1. Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., et al. (2016). Global agricultural intensification during climate change: A role for genomics. Plant Biotechnology Journal, 14, 1095–1098.  https://doi.org/10.1111/pbi.12467.CrossRefPubMedGoogle Scholar
  2. Abraham, E., Salamo, I. P., Koncz, C., & Szabados, L. (2011). Identification of Arabidopsis and Thellungiella genes involved in salt tolerance by novel genetic system. Acta Biologica Szegediensis, 55(1), 53–57.Google Scholar
  3. Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, M., Darusman, L. K., et al. (2012). KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant & Cell Physiology, 53, e1.CrossRefGoogle Scholar
  4. Agarwal, S., & Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19(2), 149–161.CrossRefGoogle Scholar
  5. Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76.PubMedCrossRefGoogle Scholar
  6. Ahmad, P., & Prasad, M. N. V. (2012). Abiotic stress responses in plants: Metabolism, productivity and sustainability. New York: Springer.CrossRefGoogle Scholar
  7. Ahmad, C. A., Jaleel, M. A., Salem, G. N., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175.PubMedCrossRefGoogle Scholar
  8. Ahmad, R., Lim, C. J., & Kwon, S.-Y. (2013). Glycine betaine: A versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnology Reports, 7, 49–57.CrossRefGoogle Scholar
  9. Ahmed, S. (2009). Effect of soil salinity on the yield and yield components of mungbean. Pakistan Journal of Botany, 41, 263–268.Google Scholar
  10. Alamgir, N. M., & Ali, M. Y. (1999). Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPase activity of rice (Oryza sativa L.). Bangladesh Journal of Botany, 28(2), 145–149.Google Scholar
  11. Alcazar, R., Marco, F., Cuevas, J. C., et al. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867–1876.PubMedCrossRefGoogle Scholar
  12. Alcazar, R., Planas, J., Saxena, T., et al. (2010). Putrescine accumulation ´ confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiology and Biochemistry, 48(7), 547–552.PubMedCrossRefGoogle Scholar
  13. Aly-Salama, K. H., & Al-Mutawa, M. M. (2009). Glutathione-triggered mitigation in salt-induced alterations in plasmalemma of onion epidermal cells. International Journal of Agriculture and Biology, 11(5), 639–642.Google Scholar
  14. Anderson, B., Ward, J., & Schroeder, J. (1994). Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology, 104, 1177–1183.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.PubMedCrossRefGoogle Scholar
  16. Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative systems in plants. Current Science, 82, 1227–1238.Google Scholar
  17. Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50, 601–639.CrossRefGoogle Scholar
  18. Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.CrossRefGoogle Scholar
  19. Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29(3), 162–190.CrossRefGoogle Scholar
  20. Azhiri-Sigari, T., Yamauchi, A., Kamoshita, A., & Wade, L. J. (2000). Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Production Science, 3, 180–188.CrossRefGoogle Scholar
  21. Babu, R. C., Pathan, M. S., Blum, A., & Nguyen, H. T. (1999). Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science, 39, 150–158.CrossRefGoogle Scholar
  22. Bajgu. (2014). Nitric oxide: Role in plants under abiotic stress. In Physiological mechanisms and adaptation strategies in plants under changing environment (pp. 137–159). Springer.Google Scholar
  23. Bao, H., Chen, X., Lv, S., Jiang, P., Feng, J., Fan, P., Nie, L., & Li, Y. (2014). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by gamma-aminobutyric acid metabolic pathway. Plant, Cell & Environment, 38(3), 600–613.CrossRefGoogle Scholar
  24. Barragan, V., Leidi, E. O., Andrés, Z., et al. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24(3), 1127–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Begara-Morales, J. C., Sanchez-Calvo, B., Chaki, M., et al. (2014). Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. Journal of Experimental Botany, 65(2), 527–538.PubMedCrossRefGoogle Scholar
  26. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 1–10.CrossRefGoogle Scholar
  27. Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., & Ben Abdullah, F. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry, 58(7), 4216–4222.PubMedCrossRefGoogle Scholar
  28. Besseau, S., Kellner, F., Lanoue, A., Thamm, A. M., Salim, V., Schneider, B., Geu-Flores, F., Hofer, R., Guirimand, G., Guihur, A., et al. (2013). A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiology, 163, 1792–1803.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bi, X. L., Zhang, J. L., Chen, C. S., Zhang, D., Li, P. M., & Ma, F. W. (2014). Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 152, 205–209.PubMedCrossRefGoogle Scholar
  30. Binzel, M. L., Hess, F. D., Bressan, R. A., & Hasegawa, P. M. (1988). Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiology, 86, 607–614.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Biscarini, F., Cozzi, P., Casella, L., Riccardi, P., Vattari, A., Orasen, G., et al. (2016). Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS One, 11, e0155425.  https://doi.org/10.1371/journal.pone.0155425.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Blum, A., Zhang, J., & Nguyen, H. T. (1999). Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Research, 64, 287–291.CrossRefGoogle Scholar
  33. Bohnert, J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7(7), 1099–1111.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bolaños, J., & Edmeades, G. O. (1991). Value of selection for osmotic potential in tropical maize. Agronomy Journal, 83, 948–956.CrossRefGoogle Scholar
  35. Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 277, 2022–2037.PubMedCrossRefGoogle Scholar
  36. Bottcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D., & Clemens, S. (2008). Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiology, 147, 2107–2120.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bouchet, S., Bertin, P., Presterl, T., Jamin, P., Coubriche, D., Gouesnard, B., et al. (2017). Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity, 118, 249–259.  https://doi.org/10.1038/hdy.2016.88.CrossRefPubMedGoogle Scholar
  38. Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. Rockville: American Society of Plant Physiologists.Google Scholar
  39. Cabot, C., Sibole, J. V., Barcelo, J., & Poschenrieder, C. (2009). Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, 28(2), 187–192.CrossRefGoogle Scholar
  40. Chai, Y. Y., Jiang, C. D., Shi, L., Shi, T. S., & Gu, W. B. (2010). Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54(1), 145–148.CrossRefGoogle Scholar
  41. Chalker-Scott, L. (2002). Do anthocyanins function as osmoregulators in leaf tissues? Advances in Botanical Research, 37, 103–106.CrossRefGoogle Scholar
  42. Cha-Um, S., & Kirdmanee, C. (2010). Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6), 517–527.Google Scholar
  43. Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365–2384.PubMedCrossRefGoogle Scholar
  44. De Lourdes Oliveira Otoch, M., Menezes Sobreira, A. C., Farias De Aragao, M. E., Orellano, E. G., Da Guia Silva Lima, M., & Fernandes De Melo, ˜. D. (2001). Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology, 158(5), 545–551.CrossRefGoogle Scholar
  45. Deivanai, S., Xavier, R., Vinod, V., Timalata, K., & Lim, O. F. (2011). Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. Journal of Stress Physiology & Biochemistry, 7, 157–174.Google Scholar
  46. Dhanapal, A. P., Ray, J. D., Singh, S. K., Hoyos-Villegas, V., Smith, J. R., Purcell, L. C., et al. (2015). Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean (Glycine max (L.) Merr.) genotypes. Theoretical and Applied Genetics, 128, 73–91.  https://doi.org/10.1007/s00122-014-2419-9.CrossRefPubMedGoogle Scholar
  47. Dhanapal, A. P., Ray, J. D., Singh, S. K., Hoyos-Villegas, V., Smith, J. R., Purcell, L. C., et al. (2016). Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biology, 16, 174.  https://doi.org/10.1186/s12870-016-0861-x.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dietz, K. J., Tavakoli, N., Kluge, C., et al. (2001). Significance of the Vtype ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany, 52(363), 1969–1980.PubMedCrossRefGoogle Scholar
  49. Dopp, M., Larher, F., & Weigel, P. (1985). Osmotic adaption in Australian mangroves. Vegetatio, 61(1–3), 247–253.CrossRefGoogle Scholar
  50. Duan, J., Li, J., Guo, S., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 165(15), 1620–1635.PubMedCrossRefGoogle Scholar
  51. Düring, H., & Dry, P. R. (1995). Osmoregulation in water stressed roots: Responses of leaf conductance and photosynthesis. Vitis, 34, 15–17.Google Scholar
  52. Dwivedi, S. L., Salvatore, C., Blair, M. W., Upadhyaya, H. D., Are, A. K., & Ortiz, R. (2016). Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science, 21, 31–41.  https://doi.org/10.1016/j.tplants.2015.10.012.CrossRefPubMedGoogle Scholar
  53. El-Mashad, A. A., & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625–635.PubMedPubMedCentralCrossRefGoogle Scholar
  54. El-Shintinawy, F., & El-Shourbagy, M. N. (2001). Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biologia Plantarum, 44(4), 541–545.CrossRefGoogle Scholar
  55. El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45(3), 215–224.CrossRefGoogle Scholar
  56. Famoso, A. N., Zhao, K., Clark, R. T., Tung, C.-W., Wright, M. H., Bustamante, C., et al. (2011). Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 7, e1002221.  https://doi.org/10.1371/journal.pgen.1002221.CrossRefPubMedPubMedCentralGoogle Scholar
  57. FAO. (2009). High level expert forum—How to feed the world in 2050. Economic and Social Development, Food and Agricultural Organization of the United Nations. Rome.Google Scholar
  58. Farfan, I. D. B., De La Fuente, G. N., Murray, S. C., Isakeit, T., Huang, P. C., Warburton, M., et al. (2015). Genome-wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the subtropics. PLoS One, 10, e0117737.  https://doi.org/10.1371/journal.pone.0117737.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.CrossRefGoogle Scholar
  60. Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A. J., Saito, K., Fraser, P. D., & DeLuca, V. (2011). Recommendations for reporting metabolite data. Plant Cell, 23, 2477–2482.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ferreres, F., Figueiredo, R., Bettencourt, S., Carqueijeiro, I., Oliveira, J., Gil-Izquierdo, A., Pereira, D. M., Valentao, P., Andrade, P. B., Duarte, P., et al. (2011). Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: An H2O2 affair? Journal of Experimental Botany, 62, 2841–2854.PubMedCrossRefGoogle Scholar
  62. Flower, D. J., & Ludlow, M. M. (1986). Conbination of osmotic adjustment to the dehydration tolerance of water-stressed pigeonpea (Cajanus cajan (L.) mill sp) leaves. Plant, Cell & Environment, 13, 33–40.Google Scholar
  63. Flower, D. J., Rani, A. U., & Peacock, J. M. (1990). Influence of osmotic adjustment on the growth, stomatal conductance and light interception of contrasting sorghum lines in a harsh environment. Australian Journal of Plant Physiology, 17, 91–105.Google Scholar
  64. Flowers, J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307–319.PubMedCrossRefGoogle Scholar
  65. Ford, W. (1984). Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry, 23(5), 1007–1015.CrossRefGoogle Scholar
  66. Foyer, H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100(2), 241–254.CrossRefGoogle Scholar
  67. Fragnire, C., Serrano, M., Abou-Mansour, E., Metraux, J.-P., & L’Haridon, F. (2011). Salicylic acid and its location in response to biotic and abiotic stress. FEBS Letters, 585(12), 1847–1852.CrossRefGoogle Scholar
  68. Frensch, J., & Hsiao, T. C. (1994). Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiology, 104, 246–254.CrossRefGoogle Scholar
  69. Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40, 67–86.CrossRefGoogle Scholar
  70. Fukuda, A., & Tanaka, Y. (2006). Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+- inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiology and Biochemistry, 44(5–6), 351–358.PubMedCrossRefGoogle Scholar
  71. Gadallah, A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2), 249–257.CrossRefGoogle Scholar
  72. Galvez, J., Baghour, M., Hao, G., Cagnac, O., Rodríguez-Rosales, M. P., & Venema, K. (2012). Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiology and Biochemistry, 51, 109–115.PubMedCrossRefGoogle Scholar
  73. Gamon, J., Penuelas, J., & Field, C. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.  https://doi.org/10.1016/0034-4257(92)90059-s.CrossRefGoogle Scholar
  74. Gao, Z., Sagi, M., & Lips, S. H. (1998). Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Science, 135(2), 149–159.CrossRefGoogle Scholar
  75. Ge, C., Cui, X., Wang, Y., et al. (2006). BUD2, encoding an Sadenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Research, 16(5), 446–456.PubMedCrossRefGoogle Scholar
  76. Gill, S. S., Tajrishi, M., Madan, M., & Tuteja, N. (2013). A DESDbox helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Molecular Biology, 82(1–2), 1–22.PubMedCrossRefGoogle Scholar
  77. Glaser, K., Kanawati, B., Kubo, T., Schmitt-Kopplin, P., & Grill, E. (2014). Exploring the Arabidopsis sulfur metabolome. The Plant Journal, 77, 31–45.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Graham, P. H., & Vance, C. P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology, 131, 872–877.  https://doi.org/10.1104/pp.017004.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4, 419.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Grumet, R., Albrechtsen, R. S., & Handon, A. D. (1987). Growth and yield of barley isopopulations differing in solute potential. Crop Science, 27, 991–995.CrossRefGoogle Scholar
  81. Guei, R. G., & Wassom, C. E. (1993). Genetics of osmotic adjustment in breeding maize for drought tolerance. Heredity, 71, 436–441.CrossRefGoogle Scholar
  82. Guo, Y., Qiu, Q.-S., Quintero, F. J., et al. (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 16(2), 435–449.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Guo, Z., Chen, D., Alqudah, A. M., Röder, M. S., Ganal, M. W., & Schnurbusch, T. (2016). Genome-wide association analyses of 54 traits identified multiple loci for the determination of floral fertility in wheat. The New Phytologist, 214, 257–270.  https://doi.org/10.1111/nph.14342.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gupta, K. J., Stoimenova, M., & Kaiser, W. M. (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany, 56(420), 2601–2609.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Gupta, K., Dey, A., & Gupta, B. (2013a). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35(7), 2015–2036.CrossRefGoogle Scholar
  86. Gupta, K., Dey, A., & Gupta, B. (2013b). Polyamines and their role in plant osmotic stress tolerance. In N. Tuteja & S. S. Gill (Eds.), Climate change and plant abiotic stress tolerance (pp. 1053–1072). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  87. Gurmani, R., Bano, A., Khan, S. U., Din, J., & Zhang, J. L. (2011). Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science, 5(10), 1278–1285.Google Scholar
  88. Hale, M. G., & Orcutt, D. M. (1987). The physiology of plants under stress. New York: Wiley.Google Scholar
  89. Handrick, V., Vogt, T., & Frolov, A. (2010). Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 398, 2789–2801.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hanson, A. D., Rathinasabapathi, B., Rivoal, J., Burnet, M., Dillon, M. O., & Gage, D. A. (1994). Osmoprotective compounds in the Plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 306–310.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hanzawa, Y., Imai, A., Michael, A. J., Komeda, Y., & Takahashi, T. (2002). Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Letters, 527(1–3), 176–180.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Hao, D., Cheng, H., Yin, Z., Cui, S., Zhang, D., Wang, H., et al. (2012). Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycne max) landraces across multiple environments. Theoretical and Applied Genetics, 124, 447–458.  https://doi.org/10.1007/s00122-011-1719-0.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Regulatory role of polyamines in growth, development and abiotic stress tolerance in plants. In Plant adaptation to environmental change: Significance of amino acids and their derivatives (pp. 157–193).Google Scholar
  95. Hasegawa, P. M. (2013). Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92, 19–31.CrossRefGoogle Scholar
  96. Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51, 463–499.CrossRefGoogle Scholar
  97. Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79, 597–606.PubMedCrossRefGoogle Scholar
  98. Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., & Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172, 1113–1123.  https://doi.org/10.1016/j.plantsci.2007.03.004.CrossRefGoogle Scholar
  99. He, L., Nada, K., & Tachibana, S. (2002). Effects of Spd pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). Journal of the Japanese Society for Horticultural Science, 71, 490–498.CrossRefGoogle Scholar
  100. Hernandez, I., Alegre, L., Van Breusegem, F., & Munne-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125–132.PubMedCrossRefGoogle Scholar
  101. Herritt, M., Dhanapal, A. P., & Fritschi, F. B. (2016). Identification of genomic loci associated with the photochemical reflectance index by genome-wide association study in soybean. Plant Genome, 9.  https://doi.org/10.3835/plantgenome2015.08.0072.CrossRefGoogle Scholar
  102. Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 61, 1041–1052.PubMedCrossRefGoogle Scholar
  103. Hoque, M. A., Banu, M. N. A., Okuma, E., et al. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbateglutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11), 1457–1468.PubMedCrossRefGoogle Scholar
  104. Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165(8), 813–824.PubMedCrossRefGoogle Scholar
  105. Hossain, K. K., Itoh, R. D., Yoshimura, G., et al. (2010). Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russian Journal of Plant Physiology, 57(2), 222–232.CrossRefGoogle Scholar
  106. Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., & Murata, Y. (2011). Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiology, 156(1), 430–438.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of root versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany, 51, 1595–1616.PubMedCrossRefGoogle Scholar
  108. Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551.  https://doi.org/10.1146/annurev-arplant-050213-035715.CrossRefPubMedGoogle Scholar
  109. Hummel, I., EI-Amrani, A., Gouesbet, G., Hennion, F., & Couee, I. (2004). Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. Journal of Experimental Botany, 55, 1125–1134.PubMedCrossRefGoogle Scholar
  110. Hussain, K., Nawaz, K., Majeed, A., et al. (2011). Role of exogenous salicylic acid applications for salt tolerance in violet (Viola Odorata L.). Sarhad Journal of Agriculture, 27, 171–175.Google Scholar
  111. Ingvordsen, C. H., Backes, G., Lyngkjaer, M. F., Peltonen-Sainio, P., Jahoor, A., Mikkelsen, T. N., et al. (2015). Genome-wide association study of production and stability traits in barley cultivated under future climate scenarios. Molecular Breeding, 35, 84.  https://doi.org/10.1007/s11032-015-0283-8.CrossRefGoogle Scholar
  112. Ippolito, A., Nigro, F., Lima, G., et al. (1997). Mechanism of resistance to Botrytis cinerea in wound of cured kiwifruits. Acta Horticulturae, 444, 719–724.CrossRefGoogle Scholar
  113. Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., Zhu, J.- K. (2000). SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding. Plant Cell, 12(9), 1667–1677.PubMedPubMedCentralCrossRefGoogle Scholar
  114. James, R. A., Blake, C., Byrt, C. S., & Munns, R. (2011). Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 62(8), 2939–2947.PubMedCrossRefGoogle Scholar
  115. Janska, A., Marsik, P., Zelenkova, S., & Odessa, J. (2010). Cold stress and acclimation – What is important for metabolic adjustment? Plant Biology, 12, 395–405.PubMedCrossRefGoogle Scholar
  116. Jayakannan, M., Bose, J., Babourina, O., et al. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255–2268.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Jeschke, W. D., Peuke, A. D., Pate, J. S., & Hartung, W. (1997). Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. Journal of Experimental Botany, 48(314), 1737–1747.CrossRefGoogle Scholar
  118. Kavi-Kishor, P. B., Sangam, S., Amrutha, R. N., Sri-Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Sreenath, R., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.Google Scholar
  119. Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40(2), 482–487.CrossRefGoogle Scholar
  120. Keskin, B. C., Sarikaya, A. T., Yuksel, B., & Memon, A. R. (2010). Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 4(8), 617–625.Google Scholar
  121. Keunen, E., Peshev, D., Vangronsveld, J., Van den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment, 36, 1242–1255.CrossRefGoogle Scholar
  122. Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000). Effects of sodium chloride treatments on growth and ion accumulation of the halophyte haloxylon recurvum. Communications in Soil Science and Plant Analysis, 31(17–18), 2763–2774.CrossRefGoogle Scholar
  123. Kim, H., Latif Khan, A., Waqas, M., et al. (2013). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 33, 137–149.CrossRefGoogle Scholar
  124. Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19, 479–509.CrossRefGoogle Scholar
  125. Knott, J. M., Romer, P., & Sumper, M. (2007). Putative spermine syn- ¨ thases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081–3086.PubMedCrossRefGoogle Scholar
  126. Kopyra, M., & Gwóźdź, E. A. (2003). Nitric oxide stimulates seed ´ germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry, 41(11–12), 1011–1017.CrossRefGoogle Scholar
  127. Kovacs, Z., Simon-Sarkadi, L., Szucs, A., & Kocsy, G. (2010). Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids, 38(2), 623–631.PubMedCrossRefGoogle Scholar
  128. Kudoh, H., & Sonoike, K. (2002). Irreversible damage to photo system I by chilling in the light: Cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215, 541–548.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Kusano, T., Yamaguchi, K., Berberich, T., & Takahashi, Y. (2007). Advances in polyamine research in 2007. Journal of Plant Research, 120(3), 345–350.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., et al. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. The Plant Journal, 67, 354–369.PubMedCrossRefGoogle Scholar
  131. Lasky, J. R., Upadhyaya, H. D., Ramu, P., Deshpande, S., Hash, C. T., Bonnette, J., et al. (2015). Genome-environment associations in sorghum landraces predict adaptive traits. Science Advances, 1, e1400218.  https://doi.org/10.1126/sciadv.1400218.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Lavola, A., Julkunen-Tiitto, R., de laRosa, T. M., Lehto, T., & Aphalo, P. J. (2000). Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiologia Plantarum, 109, 260–267.CrossRefGoogle Scholar
  133. Leiser, W. L., Rattunde, H. F. W., Weltzein, E., Cisse, N., Abdou, M., Diallo, A., et al. (2014). Two in one sweep: Aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biology, 14, 206.  https://doi.org/10.1186/s12870-014-0206-6.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Lesk, C., Rowhami, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.  https://doi.org/10.1038/nature16467.CrossRefGoogle Scholar
  135. Levitt, J. (1980). Responses of plants to environmental stress: Chilling, freezing, and high temperature stresses (2nd ed.). New York: Academic.Google Scholar
  136. Li, Z., Wakao, S., Fischer, B. B., & Niyogi, K. K. (2009). Sensing and responding to excess light. Annual Review of Plant Biology, 60, 391–395.  https://doi.org/10.1146/annurev.arplant.58.032806.103844.CrossRefGoogle Scholar
  137. Li, B., He, L., Guo, S., et al. (2013). Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiology and Biochemistry, 67, 7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Liang, S., Zhou, R., Dong, S., & Shil, S. (2008). Adaptation to salinity in mangroves: Implication on the evolution of salt tolerance. Chinese Science Bulletin, 53, 1708–1715.CrossRefGoogle Scholar
  139. Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., & Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3730–3734.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Liu, W., Li, R.-J., Han, T.-T., Cai, W., Fu, Z.-W., & Lu, Y.-T. (2015). Salt stress reduces root meristem size by nitric oxide-mediated modulation of Auxin accumulation and Signaling in Arabidopsis. Plant Physiology, 168(1), 343–356.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344, 516–519.PubMedCrossRefGoogle Scholar
  142. Ludlow, M. M., Santamaria, J. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II. Water stress after anthesis. Australian Journal of Agricultural Research, 41, 67–78.CrossRefGoogle Scholar
  143. Ma, L., Zhang, H., Sun, L., et al. (2012). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1), 305–317.PubMedCrossRefGoogle Scholar
  144. Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, R. V., & Paris, T. R. (2012). Development and rapid adoption of sub-mergence-tolerant (Sub1) rice varieties. Advances in Agronomy, 155, 299–352.  https://doi.org/10.1016/B978-0-12-394276-0.00006-8.CrossRefGoogle Scholar
  145. Mahfouz, M. M., Piatek, A., & Stewart, C. N., Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: Challenges and perspectives. Plant Biotechnology Journal, 12, 1006–1014.PubMedCrossRefGoogle Scholar
  146. Makela, P., Karkkainen, J., & Somersalo, S. (2000). Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 43(3), 471–475.CrossRefGoogle Scholar
  147. Makumburage, G. B., Richbourg, H. L., La Torre, K. D., Capps, A., Chen, C. X., & Stapleton, A. E. (2013). Genotype to phenotype maps: Multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3. Bethesda, 3, 2195–2204.  https://doi.org/10.1534/g3.113.008573.CrossRefGoogle Scholar
  148. Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J. K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant, 6, 2008–2011.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Martínez-Atienza, J., Jiang, X., Garciadeblas, B., et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143(2), 1001–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Matysik, J., Alia, A., Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82(5), 525–532.Google Scholar
  151. Maurer, A., Draba, V., Jiang, Y., Schnaithmann, F., Sharma, R., Schumann, E., et al. (2015). Modelling the genetic architecture of flowering time in barley through nested association mapping. BMC Genomics, 16, 290.  https://doi.org/10.1186/s12864-015-1459-7.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Michael, T. P., & VanBuren, R. (2015). Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 24, 71–81.  https://doi.org/10.1016/j.pbi.2015.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467.CrossRefGoogle Scholar
  154. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Morales, D., Rodriguez, P., Dellamico, J., Nicolas, E., Torrecillas, A., & Sanchez-Blanco, M. J. (2003). Hightemperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 47, 203–208.CrossRefGoogle Scholar
  156. Morgan, J. M. (1983). Osmoregulation as a selection criterion for drought tolerance in wheat. Australian Journal of Agricultural Research, 34, 607–614.CrossRefGoogle Scholar
  157. Morgan, J. M. (1995). Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Research, 40, 143–152.CrossRefGoogle Scholar
  158. Morgan, J. M., Rodríguez-Maribona, B., & Knights, E. J. (1991). Adaptation to water-deficit in chickpea breeding lines by osmoregulation: Relationship to grain-yields in the field. Field Crops Research, 27, 61–70.CrossRefGoogle Scholar
  159. Morreel, K., Saeys, Y., Dima, O., Lu, F., Van de Peer, Y., Vanholme, R., Ralph, J., Vanholme, B., & Boerjan, W. (2014). Systematic structural characterization of metabolites in Arabidopsis via candidate substrate–product pair networks. Plant Cell, 26, 929–945.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer rape. Crop Science, 42, 797–803.CrossRefGoogle Scholar
  161. Moschou, P. N., Delis, I. D., Paschalidis, K. A., & Roubelakis-Angelakis, K. A. (2008a). Transgenic tobacco plants over expressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiologia Plantarum, 133, 140–156.PubMedCrossRefGoogle Scholar
  162. Moschou, P. N., Paschalidis, K. A., & RoubelakisAngelakis, K. A. (2008b). Plant polyamine catabolism: The state of the art. Plant Signaling and Behavior, 3(12), 1061–1066.PubMedCrossRefGoogle Scholar
  163. Msanne, J., Lin, J., Stone, J., & Awada, T. (2011). Characterization of abiotic stress responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta, 234, 97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Munir, N., & Aftab, F. (2011). Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. African Journal of Biotechnology, 10(80), 18362–18370.Google Scholar
  165. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167(3), 645–663.PubMedCrossRefGoogle Scholar
  166. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Nakabayashi, R., Sawada, Y., Yamada, Y., Suzuki, M., Hirai, M. Y., Sakurai, T., & Saito, K. (2013). Combination of liquid chromatography– Fourier transform ion cyclotron resonance-mass spectrometry with 13C-labeling for chemical assignment of sulfur-containing metabolites in onion bulbs. Analytical Chemistry, 85, 1310–1315.PubMedCrossRefGoogle Scholar
  168. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., et al. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 77, 367–379.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Natella, F., Maldini, M., Leoni, G., & Scaccini, C. (2014). Glucosinolates redox activities: Can they act as antioxidants? Food Chemistry, 149, 226–232.PubMedCrossRefGoogle Scholar
  170. Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22, 746–754.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147, 1251–1263.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6), 596–604.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Nutzmann, H. W., & Osbourn, A. (2014). Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 26, 91–99.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Oh, D.-H., Lee, S. Y., Bressan, R. A., Yun, D.-J., & Bohnert, H. J. (2010). Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 61(4), 1205–1213.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Oikawa, A., & Saito, K. (2012). Metabolite analyses of single cells. The Plant Journal, 70, 30–38.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Okubo, K., & Yoshiki, Y. (2000). The role of triterpenoid on reactive oxygen scavenging system: Approach from the new chemiluminescence system (XYZ system). BioFactors, 13, 219–223.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Oleszek, W. A. (2002). Chromatographic determination of plant saponins. Journal of Chromatography. A, 967, 147–162.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Ortiz, R. (2015). Plant breeding in the Omics era (p. 249). New York: Springer.  https://doi.org/10.1007/978-3-319-20532-8.CrossRefGoogle Scholar
  181. Pang, S., Chen, S., Dai, Y., Chen, Y. W., & Yan, X. (2010). Comparative proteomics of salt tolerance inArabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research, 9(5), 2584–2599.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Panicot, M., Minguet, E. G., Ferrando, A., et al. (2002). A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell, 14(10), 2539–2551.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Parida, K., Das, A. B., & Mohanty, P. (2004). Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42(3), 213–226.CrossRefGoogle Scholar
  184. Pasam, R. K., Sharma, R., Malosetti, M., van Eeuwijk, F. A., Haseneyer, G., Kilian, B., et al. (2012). Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biology, 12, 16.  https://doi.org/10.1186/1471-2229-12-16.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Peshev, D., Vergauwen, R., Moglia, A., Hideg, E., & Van den Ende, W. (2013). Towards understanding vacuolar antioxidant mechanisms: A role for fructans? Journal of Experimental Botany, 64, 1025–1038.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741–758.  https://doi.org/10.1111/j.1461-0248.2006.00924.x.CrossRefPubMedPubMedCentralGoogle Scholar
  187. Pollier, J., Morreel, K., Geelen, D., & Goossens, A. (2011). Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Journal of Natural Products, 74, 1462–1476.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Pontis, H. G. (1989). Fructans and cold stress. Journal of Plant Physiology, 134, 148–150.CrossRefGoogle Scholar
  189. Qin, P., Lin, Y., Hu, Y., Liu, K., Mao, S., Li, Z., et al. (2016). Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genetics and Molecular Biology, 39, 398–407.  https://doi.org/10.1590/1678-4685-GMB-2015-0232.CrossRefPubMedPubMedCentralGoogle Scholar
  190. Queval, G., Jaillard, D., Zechmann, B., & Noctor, G. (2011). Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant, Cell & Environment, 34, 21–32.CrossRefGoogle Scholar
  191. Quintero, J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9061–9066.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Quintero, J., Martinez-Atienza, J., Villalta, I., et al. (2011). Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2611–2616.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Quisenberry, J. E., Cartwright, G. B., & McMichael, B. L. (1984). Genetic relationship between turgor maintenance and growth in cotton germplasm. Crop Science, 24, 479–482.CrossRefGoogle Scholar
  194. Radin, J. W. (1983). Physiological consequences of cellular water defi cit: Osmotic adjustment. In H. M. Taylor, W. R. Jordan, & T. R. Sinclair (Eds.), Limitations to efficient water use in crop production (pp. 267–276). Madison: American Society of Agronomy.Google Scholar
  195. Rahman, S., Miyake, H., & Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science, 5(1), 33–44.CrossRefGoogle Scholar
  196. Rahnama, A., James, R. A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255–263.CrossRefGoogle Scholar
  197. Rambla, J. L., Vera-Sirera, F., Blazquez, M. A., Carbonell, J., & Granell, A. ´. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208–211.PubMedCrossRefGoogle Scholar
  198. Rawia Eid, A., Taha, L. S., & Ibrahiem, S. M. M. (2011). Alleviation of adverse effects of salinity on growth, and chemical constituents of marigold plants by using glutathione and ascorbate. Journal of Applied Sciences Research, 7, 714–721.Google Scholar
  199. Rebolledo, M. G., Peña, A. L., Duitama, J., Cruz, D. F., Dingkuhn, M., Grenier, C., et al. (2016). Combining image analysis, genome wide association studies and different field trials to reveal stable genetic regions related to panicle architecture and the number of spikelets per panicle in rice. Frontiers in Plant Science, 7, 1384.  https://doi.org/10.3389/fpls.2016.01384.CrossRefPubMedPubMedCentralGoogle Scholar
  200. Reddy, M. P., Sanish, S., & Iyengar, E. R. R. (1992). Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica, 26, 173–179.Google Scholar
  201. Rhee, S. Y., & Mutwil, M. (2014). Towards revealing the functions of all genes in plants. Trends in Plant Science, 19, 212–221.  https://doi.org/10.1016/j.tplants.2013.10.006.CrossRefPubMedGoogle Scholar
  202. Rodríguez-Maribona, B., Tenorio, J. L., Conde, J. R., & Ayerbe, L. (1992). Correlation between yield and osmotic adjustment of peas (Pisum sativum L.) under drought stress. Field Crops Research, 29, 15–22.CrossRefGoogle Scholar
  203. Roy, M., & Wu, R. (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 163(5), 987–992.CrossRefGoogle Scholar
  204. Roy, S. J., Negrao, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.PubMedCrossRefGoogle Scholar
  205. Roychoudhury, A., Basu, S., & Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168(4), 317–328.PubMedCrossRefGoogle Scholar
  206. Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3), 407–421.Google Scholar
  207. Saito, K. (2013). Phytochemical genomics — A new trend. Current Opinion in Plant Biology, 16, 373–380.PubMedCrossRefGoogle Scholar
  208. Saito, K., Hirai, M. Y., & Yonekura-Sakakibara, K. (2008). Decoding genes with coexpression networks and metabolomics — ‘Majority report by precogs’. Trends in Plant Science, 13, 36–43.PubMedCrossRefGoogle Scholar
  209. Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., & Fernie, A. R. (2013). The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry, 72, 21–34.PubMedCrossRefGoogle Scholar
  210. Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant, Cell & Environment, 25, 163–171.CrossRefGoogle Scholar
  211. Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10(13), R486–R488.PubMedCrossRefGoogle Scholar
  212. Santakumari, M., & Berkowitz, G. A. (1991). Chloroplast volume: Cell water potential relationships and acclimation of photosynthesis to leaf water deficits. Photosynthesis Research, 28, 9–20.PubMedCrossRefGoogle Scholar
  213. Santamaria, J. M., Ludlow, M. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. I. Water stress before anthesis. Australian Journal of Agricultural Research, 41, 51–65.CrossRefGoogle Scholar
  214. Sawada, H., Shim, I.-S., & Usui, K. (2006). Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Science, 171(2), 263–270.CrossRefGoogle Scholar
  215. Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., et al. (2014). Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 26, 3763–3774.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Saxena, S. C., Kaur, H., Verma, P., et al. (2013). Osmoprotectants: Potential for crop improvement under adverse conditions. In Plant acclimation to environmental stress (pp. 197–232). New York: Springer.CrossRefGoogle Scholar
  217. Scheben, A., Batley, J., & Edwards, D. (2017a). Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool for the right application. Plant Biotechnology Journal, 15, 149–161.  https://doi.org/10.1111/pbi.12645.CrossRefPubMedPubMedCentralGoogle Scholar
  218. Scheben, A., Wolter, F., Batley, J., Puchta, H., & Edwards, D. (2017b). Towards CRISPR/Cas crops – Bringing together genomics and genome editing. The New Phytologist.  https://doi.org/10.1111/nph.14702. Epub ahead of print.PubMedCrossRefGoogle Scholar
  219. Schroeder, J. I., Delhaize, E., Frommer, W. B., et al. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60–66.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25, 333–341.CrossRefGoogle Scholar
  221. Serrano, R., Mulet, J. M., Rios, G., et al. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.CrossRefGoogle Scholar
  222. Shahidi, F., & Chandrasekara, A. (2010). Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochemistry Reviews, 9, 147–170.CrossRefGoogle Scholar
  223. Shaked-Sachray, L., Weiss, D., Reuveni, M., Nissim-Levi, A., & Oren-Shamir, M. (2002). Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiologia Plantarum, 114, 559–565.PubMedCrossRefGoogle Scholar
  224. Sharp, R. E., & Davies, W. J. (1979). Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147, 43–49.PubMedCrossRefGoogle Scholar
  225. Sharp, R. E., Hsiao, C. T., & Silk, W. K. (1990). Growth of the maize primary root at low water potentials. II role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 93, 1337–1346.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., & Nguyen, H. T. (2004). Root growth maintenance during water defi cits: Physiology to functional genomics. Journal of Experimental Botany, 55, 2343–2351.PubMedCrossRefGoogle Scholar
  227. Shevyakova, I., Musatenko, L. I., Stetsenko, L. A., et al. (2013). Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress. Russian Journal of Plant Physiology, 60, 200–211.CrossRefGoogle Scholar
  228. Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6896–6901.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Shi, Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell, 14(2), 465–477.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Signorelli, S., Coitiño, E. L., Borsani, O., & Monza, J. (2014). Molecular mechanisms for the reaction between (_)OH radicals and proline: Insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118, 37–47.PubMedCrossRefGoogle Scholar
  231. Sima, N. A. K. K., Askari, H., Mirzaei, H. H., & Pessarakli, M. (2009). Genotype-dependent differential responses of three forage species to calcium supplement in saline conditions. Journal of Plant Nutrition, 32, 579–597.CrossRefGoogle Scholar
  232. Simoes-Araujo, J. L., Rumjanek, N. G., & Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 33–41.CrossRefGoogle Scholar
  233. Sturm, S., & Seger, C. (2012). Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography– Mass spectrometry hyphenations: Curious option or powerful and complementary routine tool? Journal of Chromatography. A, 1259, 50–61.PubMedCrossRefGoogle Scholar
  234. Subbarao, G. V., Chauhan, Y. S., & Johansen, C. (2000). Patterns of osmotic adjustment in pigeonpea – Its importance as a mechanism of drought resistance. European Journal of Agronomy, 12, 239–249.CrossRefGoogle Scholar
  235. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3, 211–221.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Sumner, L. W., Lei, Z., Nikolau, B. J., Saito, K., Roessner, U., & Trengove, R. (2014). Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics, 10, 1047–1049.CrossRefGoogle Scholar
  237. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. The New Phytologist, 203, 32–43.PubMedCrossRefGoogle Scholar
  238. Szabados, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.PubMedCrossRefGoogle Scholar
  239. Tahir, M. A., Aziz, T., Farooq, M., & Sarwar, G. (2012). Siliconinduced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two saltstressed wheat genotypes. Archives of Agronomy and Soil Science, 58(3), 247–256.CrossRefGoogle Scholar
  240. Takahashi, T., & Kakehi, J.-I. (2010). Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1–6.PubMedCrossRefGoogle Scholar
  241. Thoen, M. P. M., Olivas, N. H. D., Kloth, K. J., Coolen, S., Huang, P.-P., Aarts, M. G., et al. (2016). Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. The New Phytologist, 213, 1346–1362.  https://doi.org/10.1111/nph.14220.CrossRefPubMedPubMedCentralGoogle Scholar
  242. Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression inArabidopsis thaliana. Plant, Cell and Environment, 18(7), 801–806.CrossRefGoogle Scholar
  243. Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 571–599.PubMedCrossRefPubMedCentralGoogle Scholar
  244. Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 43, 159–162.  https://doi.org/10.1038/ng.746.CrossRefPubMedGoogle Scholar
  245. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.  https://doi.org/10.1073/pnas.1116437108.CrossRefPubMedPubMedCentralGoogle Scholar
  246. Tohge, T., Ramos, M. S., Nunes-Nesi, A., Mutwil, M., Giavalisco, P., Steinhauser, D., Schellenberg, M., Willmitzer, L., Persson, S., Martinoia, E., et al. (2011). Toward the storage metabolome: Profiling the barley vacuole. Plant Physiology, 157, 1469–1482.PubMedPubMedCentralCrossRefGoogle Scholar
  247. Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 48, 123–152.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Trethowan, R. M., Reynolds, M. P., Ortiz-Monasterio, I., & Ortiz, R. (2007). The genetic basis of the green revolution in wheat production. Plant Breeding Reviews, 28, 39–58.  https://doi.org/10.1002/9780470168028.ch2.CrossRefGoogle Scholar
  249. Turner, N. C., & Jones, M. M. (1980). Turgor maintenance by osmotic adjustment: A review and evaluation. In N. C. Turner & P. J. Kramer (Eds.), Adaptation of plant to water and high temperature stress (pp. 87–103). New York: Wiley.Google Scholar
  250. Tuteja, N., Sahoo, R. K., Garg, B., & Tuteja, R. (2013). OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). The Plant Journal, 76(1), 115–127.PubMedPubMedCentralGoogle Scholar
  251. Urano, K., Yoshiba, Y., Nanjo, T., Ito, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 313(2), 369–375.PubMedCrossRefGoogle Scholar
  252. Valluru, R., Reynolds, M. P., Davies, W. J., & Sukumaran, S. (2017). Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. The New Phytologist, 214, 271–283.  https://doi.org/10.1111/nph.14367.CrossRefPubMedGoogle Scholar
  253. Van den Ende, W., Michiels, A., DeRoover, J., & VanLaere, A. (2002). Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases: Expression of fructan genes throughout chicory development. Scientific World Journal, 2, 1273–1287.CrossRefGoogle Scholar
  254. Van Oosten, M. J., Sharkhuu, A., Batelli, G., Bressan, R. A., & Maggio, A. (2013). The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology, 83, 405–415.PubMedCrossRefGoogle Scholar
  255. Velikova, V. B., Edreva, A. M., Tsonev, T. D., & Jones, H. G. (2007). Singlet oxygen quenching by phenylamides and their parent compounds. Zeitschrift für Naturforschung. Section C, 62, 833–838.CrossRefGoogle Scholar
  256. Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35, 753–759.PubMedCrossRefGoogle Scholar
  257. Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291.PubMedCrossRefGoogle Scholar
  258. Voetberg, G. S., & Sharp, R. E. (1991). Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiology, 96, 1125–1130.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623–627.CrossRefGoogle Scholar
  260. Wang, B., Luttge, U., & Ratajczak, R. (2001). Effects of salt treatment ¨ and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52(365), 2355–2365.PubMedCrossRefPubMedCentralGoogle Scholar
  261. Westgate, M. E., & Boyer, J. S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem, and silk growth at low water potentials in maize. Planta, 164, 540–549.PubMedCrossRefGoogle Scholar
  262. Wissuwa, M., Kondo, K., Fukuda, T., Mori, A., Rose, M. T., Pariasca-Tanaka, J., et al. (2015). Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis. PLoS One, 10, e0124215.  https://doi.org/10.1371/journal.pone.0124215.CrossRefPubMedPubMedCentralGoogle Scholar
  263. Xiaomu, N. X. N., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109(3), 735–742.CrossRefGoogle Scholar
  264. Yamaguchi, K., Takahashi, Y., Berberich, T., et al. (2006). The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Letters, 580(30), 6783–6788.PubMedCrossRefGoogle Scholar
  265. Yang, Z., Nakabayashi, R., Okazaki, Y., Mori, T., Takamatsu, S., Kitanaka, S., Kikuchi, J., & Saito, K. (2014). Toward better annotation in plant metabolomics: Isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics, 10, 543–555.PubMedCrossRefPubMedCentralGoogle Scholar
  266. Yen, H. E., Wu, S.-M., Hung, Y.-H., & Yen, S.-K. (2000). Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Physiologia Plantarum, 110(3), 402–409.CrossRefGoogle Scholar
  267. Yonekura-Sakakibara, K., Nakabayashi, R., Sugawara, S., Tohge, T., Ito, T., Koyanagi, M., Kitajima, M., Takayama, H., & Saito, K. (2014). A flavonoid 3-O-glucoside:200-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. The Plant Journal, 79, 769–782.PubMedPubMedCentralCrossRefGoogle Scholar
  268. Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1–22.PubMedCrossRefPubMedCentralGoogle Scholar
  269. Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545–555.PubMedCrossRefPubMedCentralGoogle Scholar
  270. Zhang, Y., Wang, Y., Yang, H. W., Wang, D., & Liu, J. (2007). Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell and Environment, 30(7), 775–785.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.). through modulating antioxidative system. Scientia Horticulturae, 122, 200–208.CrossRefGoogle Scholar
  272. Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 151(2), 755–767.PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhao, C., Takeshima, R., Zhu, J., Xu, M., Sato, M., Watanabe, S., et al. (2016). A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of F2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 16, 20.  https://doi.org/10.1186/s12870-016-0704-9.CrossRefPubMedPubMedCentralGoogle Scholar
  274. Zhou, Y. H., Yu, J. Q., Huang, L. F., & Nogues, S. (2004). The relationship between CO2 assimilation, photosynthetic electron transport and water–water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant, Cell & Environment, 27, 1503–1514.CrossRefGoogle Scholar
  275. Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations