Advertisement

Plant Biotechnology: Tool for Sustainable Agriculture

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem
Chapter

Abstract

Agriculture has been the backbone of the human food supply directly and indirectly and global agricultural productivity must increase due to availability of limited agricultural land. Therefore, must increase in order to meet the increasing food demands. The agriculture was earlier practiced manually followed by modernization that allowed an increase in agricultural productivity. The cumulative recognition of biotechnology as an economic and social growth factor has stimulated countries to provide financial support to their local biotechnology companies to nurture research, development, and commercialization of ideas and products that have boosted biotechnological innovations and improvement in the quality and services. In this chapter the thrust will be laid on usefulness of plant biotechnology for increasing the diversity of genes and germplasm available for incorporation into crops and by significantly shortening the time required for the production of new cultivars, varieties and hybrids vis a vis contribution towards agricultural sustainability. In the last part of chapter, the conservation techniques for agriculture and sustainable development are documented with some case studies.

Keywords

Agriculture Conservation Genetechnology Sustainability 

References

  1. Adams, A. L., & Wendel, J. F. (2005). Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8, 135–141.  https://doi.org/10.1016/j.pbi.2005.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adang, M. J., Brody, M. S., Cardineau, G., Eagan, N., Roush, R. T., Shewmaker, C. K., Jones, A., Oakes, J. V., & McBride, K. E. (1993). The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Molecular Biology, 21, 1131–1145.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adenle, A. A. (2011). Response to issues on GM agriculture in Africa: Are transgenic crops safe. BMC Research Notes, 4, 1–6.CrossRefGoogle Scholar
  4. Aerni, P. (2010). Is agricultural biotechnology part of sustainable agriculture? Different views in Switzerland and New Zealand. AgBioforum, 13, 158–172.Google Scholar
  5. Akhurst, R. J., James, W., Bird, L. J., & Beard, C. (2003). Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae). Journal of Economic Entomology, 96, 1290–1299.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alvarez, J. P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., & Eshed, Y. (2006). Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 18, 1134–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alvear, M., Rosas, A., Rouanet, J. L., & Borie, F. (2005). Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil and Tillage Research, 82, 195–202.  https://doi.org/10.1016/j.still.2004.06.002.CrossRefGoogle Scholar
  8. Amir, R., & Tabe, L. (2006). Molecular approaches to improving plant methionine content. In K. J. Pawan & P. S. Rana (Eds.), Plant genetic engineering (Metabolic engineering and molecular farming II) (Vol. 8, pp. 1–26). Houston: Studium Press.Google Scholar
  9. Anderson, J. A., & Kolmer, J. A. (2005). Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Disease, 89, 1136–1142.  https://doi.org/10.1094/PD-89-1136.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Angers, D. A., et al. (1997). Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil and Tillage Research, 41, 191–201.  https://doi.org/10.1016/S0167-1987(96)01100-2.CrossRefGoogle Scholar
  11. Anthony, J., Buhr, D., Ronhovde, G., Genovesi, D., Lane, T., Yingling, R., Aves, K., Rosato, M., & Anderson, P. (1997). Transgenic maize with elevated 10 kD zein and methionine. In L. D. K. DeKok, W. J. Cram, I. Stulen, C. Brunold, & H. Rennenberg (Eds.), Sulfur metabolism in higher plants: Molecular, ecophysiological and nutritional aspects (pp. 295–297). Leiden: Backhuys Publishers.Google Scholar
  12. Anzai, H., Yoneyama, K., & Yamaguchi, I. (1989). Transgenic tobacco resistant to a bacterial disease by detoxification of a pathogenic toxin. Molecular and General Genetics, 219, 492–494.CrossRefGoogle Scholar
  13. Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in Plant Science, 20, 145–149.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Autran, D., Huanca-Mamani, W., & Vielle-Calzada, J.-P. (2005). Genome imprinting in plants: The epigenetic version of the Oedipus complex. Current Opinion in Plant Biology, 8, 19–25.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Awais, M., Pervez, A., Yaqub, A., Sarwar, R., Alam, F., & Siraj, S. (2010). Current status of biotechnology in health. American-Eurasian Journal of Agricultural & Environmental Sciences, 7(2), 210–220.Google Scholar
  16. Badami, R. C., & Patil, K. B. (1981). Structure and occurrence of unusual fatty acids in minor seed oils. Progress in Lipid Research, 19, 119–153.CrossRefGoogle Scholar
  17. Bado, S., Forster, B. P., Nielen, S., et al. (2015). Plant mutation breeding: Current progress and future assessment. Plant Breeding Reviews, 39, 23–87.Google Scholar
  18. Bagga, S., Potenza, C., Ross, J., Martin, M. N., Leustek, T., & Sengupta-Gopalan, C. (2005). A transgene for high methionine protein is posttranscriptionally regulated by methionine. In Vitro Cellular & Developmental Biology. Plant, 41, 731–741.  https://doi.org/10.1079/IVP2005709.CrossRefGoogle Scholar
  19. Bagwan, J. D., Patil, S. J., Mane, A. S., Kadam, V. V., & Vichare, S. (2010). Genetically modified crops: Food of the future. International Journal of Advanced Biotechnology and Research, 1(1), 21–30.Google Scholar
  20. Baker, C. J., Saxton, K. E., & Ritchie, W. R. (2002). No-tillage seeding: Science and practice (2nd ed.). Oxford: CAB International.Google Scholar
  21. Baker, C. J., Saxton, K. E., Ritchie, W. R., Chamen, W. C. T., Reicosky, D. C., Ribeiro, M. F. S., Justice, S. E., & Hobbs, P. R. (2006). No-tillage seeding in conservation agriculture (2nd ed.). Oxford: CAB International/FAO.CrossRefGoogle Scholar
  22. Ball, S. G., & Morell, M. K. (2003). From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 54, 207–233.  https://doi.org/10.1146/annurev.arplant.54.031902.134927.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bautista, S., Bellot, J., & Ramon-Vallejo, V. (1996). Mulching treatment for post fire soil conservation in semi-arid eco-systems. Arid Soil Research and Rehabilitation, 10, 235–242.CrossRefGoogle Scholar
  24. Bayer, C., Mielniczuk, J., Amado, T. J. C., Martin-Neto, L., & Fernandes, S. V. (2000). Organic matter storage in a sandy loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil and Tillage Research, 54, 101–109.  https://doi.org/10.1016/S0167-1987(00)00090-8.CrossRefGoogle Scholar
  25. Beachy, R. N., Loesch-Fries, S., & Tumer, N. E. (1990). Coat protein mediated resistance against virus infection. Annual Review of Phytopathology, 28, 451–474.CrossRefGoogle Scholar
  26. Bellaloui, N., Mengistu, A., Walker, E. R., & Young, L. D. (2014). Soybean seed composition as affected by seeding rates and row spacing. Crop Science, 54, 1782–1795.  https://doi.org/10.2135/cropsci2013.07.0463.CrossRefGoogle Scholar
  27. Benfey, P., & Chua, N.-H. (1989). Regulated genes in transgenic plants. Science, 244, 174–181.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bhupinder, S. S. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 7, 31–53.Google Scholar
  29. Bissett, M. J., & O’Leary, G. J. (1996). Effects of conservation tillage on water infiltration in two soils in South-Eastern Australia. Australian Journal of Soil Research, 34, 299–308.  https://doi.org/10.1071/SR9960299.CrossRefGoogle Scholar
  30. Boccia, F., & Sarnacchiaro, P. (2015). Genetically modified foods and consumer perspective. Recent Patents on Food, Nutrition & Agriculture, 7, 28–34. Boston, Germany; London, UK: Kluwer Academic Publishers.CrossRefGoogle Scholar
  31. Boulter, D., Gatehouse, A., & Hilder, V. (1989). Use of cowpea trypsin inhibitor (CpTi) to protect plants against insect predation. Biotechnology Advances, 7, 489–497.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brown, A. H. D., Brubaker, C. L., & Kilby, M. J. (1997). Assessing the risk of cotton transgene escape into wild Australian Gossypium species. In G. D. McLean, P. M. Waterhouse, G. Evansand, & M. J. Gibbs (Eds.), Commercialisation of transgenic crops: Risk, benefit and trade considerations (pp. 83–94). Canberra: Cooperative Research Centre for Plant Science and Bureau of Resource Sciences.Google Scholar
  33. Brown, J., Caligari, P. D. S., & Campos, H. A. (2014). Plant breeding (2nd ed.). Chichester: Wiley Blackwell.Google Scholar
  34. Burton, R. A., et al. (2002). Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. The Plant Journal, 31, 97–112.  https://doi.org/10.1046/j.1365-313X.2002.01339.x.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Campbell, C. A., McConkey, B. G., Zentner, R. P., Dyck, F. B., Selles, F., & Curtin, D. (1995). Carbon sequestration in a Brown Chernozem as affected by tillage and rotation. Canadian Journal of Soil Science, 75, 449–458.CrossRefGoogle Scholar
  36. Carpenter-Boggs, L., Stahl, P. D., Lindstrom, M. J., & Schumacher, T. E. (2003). Soil microbial properties under permanent grass, conventional tillage, and no-till management in South Dakota. Soil and Tillage Research, 71, 15–23.  https://doi.org/10.1016/S0167-1987(02)00158-7.CrossRefGoogle Scholar
  37. CAST. (1991). Herbicide-resistant crops. ISSN 0194-4096, No. 1991-1. Council for Agricultural Science and Technology (CAST): Ames. Central India. Soil and Tillage Research, 76, 83–94.  https://doi.org/10.1016/j.still.2003.08.006.CrossRefGoogle Scholar
  38. Chamas, A. (2000). Alimentos transgénicos. Invenio, 3(4–5), 149–159.Google Scholar
  39. Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N., & Dooner, H. K. (1993). Tagging and cloning of a petunia flower color gene with the maize transposable element activator. The Plant Cell, 5, 371–378.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chui, C. F., & Falco, S. C. (1995). A new methionine-rich seed storage protein from maize. Plant Physiology, 107, 291.  https://doi.org/10.1104/pp.107.1.291.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Connelly, S. (2007). Mapping sustainable development as a contested concept. Local Environment, 12, 259–278. [Google Scholar] [CrossRef].CrossRefGoogle Scholar
  42. CRDC. (2003). Second Australian cotton industry environmental audit (p. 184). Narrabri: Cotton Research and Development Corporation. (See http://www.crdc.com.au).Google Scholar
  43. Cubero, C. (1993). Aproximacio’n al mundo agrı’cola de la primera edad del Hierro a trave’s del estudio de semillas y frutos: El Torrello d’Almassora (Castello’n). In M. P. Fumanal & J. Bernabeu (Eds.), Estudios sobre el Cuaternario (pp. 267–273). Valencia: Universitat de València.Google Scholar
  44. Dash, A., Kundu, D., Das, M., Bose, D., Adak, S., & Banerjee, R. (2016). Food biotechnology: A step towards improving nutritional quality of food for asian countries. Recent Patents on Biotechnology, 10, 43–57.PubMedCrossRefPubMedCentralGoogle Scholar
  45. de Block, M., Botterman, J., Vanderweile, M., Dockx, J., & Thoen, C. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO Journal, 6, 2513–2518.PubMedCrossRefPubMedCentralGoogle Scholar
  46. de Majnik, J., Ogbonnaya, F. C., Moullet, O., & Lagudah, E. S. (2003). The cre1 and cre3 nematode resistance genes are located at homeologous loci in the wheat genome. Molecular Plant-Microbe Interactions, 16, 1129–1134.  https://doi.org/10.1094/MPMI.2003.16.12.1129.CrossRefPubMedGoogle Scholar
  47. Delaney, B. (2015). Safety assessment of foods from genetically modified crops in countries with developing economies. Food and Chemical Toxicology, 86(2015), 132–143.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Delvalle, D., et al. (2005). Soluble starch synthase I: A major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. The Plant Journal, 43, 398–412.  https://doi.org/10.1111/j.1365-313X.2005.02462.x.CrossRefPubMedGoogle Scholar
  49. Demidov, D., Horstmann, C., Meixner, M., Pickardt, T., Saalbach, I., Galili, G., & Muntz, K. (2003). Additive effects of the feed-back insensitive bacterial aspartate kinase and the Brazil Nut 2s albumin on the methionine content of transgenic Narbon bean (Vicia narbonensis L.). Molecular Breeding, 11, 187–201.  https://doi.org/10.1023/A:1022814506153.CrossRefGoogle Scholar
  50. Denyer, K., Dunlap, F., Thorbjornsen, T., Keeling, P., & Smith, A. M. (1996). The major form of ADP–glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiology, 112, 779–785.  https://doi.org/10.1104/pp.112.2.779.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Derpsch, R. (2005). The extent of conservation agriculture adoption worldwide: Implications and impact. In Proceeding of the IV third world congress on conservation agriculture: Linking production, livelihoods and conservation, Nairobi, Kenya, 3–7 October 2005. [CD].Google Scholar
  52. Dinges, J. R., Colleoni, C., James, M. G., & Myers, A. M. (2003). Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 15, 666–680.  https://doi.org/10.1105/tpc.007575.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dodds, P. N., Lawrence, G. J., Catanzariti, A.-M., Ayliffe, M. A., & Ellis, J. G. (2004). The Melampsora lini AvrL567 avirulence genes are expressed haustoria and their products are recognized inside plant cells. Plant Cell, 16, 755–768.  https://doi.org/10.1105/tpc.020040.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Edwards, A., Vincken, J. P., Suurs, L. C., Visser, R. G., Zeeman, S., Smith, A., & Martin, C. (2002). Discrete forms of amylose are synthesized by isoforms of GBSSI in pea. Plant Cell, 14, 1767–1785.  https://doi.org/10.1105/tpc.002907.CrossRefPubMedPubMedCentralGoogle Scholar
  55. EFSA – European Food Safety Authority. (2011). Scientific opinion on the application (EFSAGMO-BE-2010-79) for the placing on the market of insect resistant genetically modified soybean MON 87701 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA Journal, 9(7), 2309.Google Scholar
  56. Ehlers, W., Kopke, U., Hess, F., & Bohm, W. (1983). Penetration resistance and root growth of soils in tilled and untilled loess soil. Soil and Tillage Research, 3, 261–275.  https://doi.org/10.1016/0167-1987(83)90027-2.CrossRefGoogle Scholar
  57. Fabrizzi, K. P., Garcia, F. O., Costa, J. L., & Picone, L. I. (2005). Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research, 81, 57–69.  https://doi.org/10.1016/j.still.2004.05.001.CrossRefGoogle Scholar
  58. FAO – Food and Agriculture Organizations of the United Nations. (2000). El Estado Mundial de la Agricultura y la alimentación. La alimentación y agricultura en el mundo: enseñanza de los 50 últimos años. Roma. 329 p.Google Scholar
  59. FAO – Food and Agriculture Organizations of the United Nations. (2012). El Estado Mundial de la Agricultura y la Alimentación. Invertir en la agricultura para tener un mejor futuro. Roma, Italia. 179 pp.Google Scholar
  60. FAO – Food and Agriculture Organizations of the United Nations. (2013). El Estado Mundial de la Agricultura y la Alimentación. Sistemas alimentarios para una mejor nutrición. Roma, Italia. 99 pp.Google Scholar
  61. Faulkner, E. B. (1987). Plowman’s folly and a second look. Washington, DC: Island Press.Google Scholar
  62. Fedoroff, N. V. (2010). The past, present and future of crop genetic modification. New Biotechnology, 27, 461–465.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Fernández-Suárez, M. R. (2009). Alimentos transgénicos: ¿Qué tan seguro es su consumo? Revista Digital Universitaria, 10(4), 1–15.Google Scholar
  64. Fitt, G. P. (2004). Implementation and impact of transgenic Bt cottons in Australia. In Cotton production for the new millennium. Proceedins third world cotton research conferencs, 9–13 march, 2003, Cape Town, South Africa, 1778 (pp. 371–381). Pretoria: Agricultural Research Council– Institute for Industrial Crops.Google Scholar
  65. Fitt, G. P., & Wilson, L. J. (2002). Non-target effects of Bt-cotton: A case study from Australia. In R. J. Akhurst, C. E. Beard, & P. A. Hughes (Eds.), Biotechnology of bacillus thuringiensis and its environmental impact: Proceedings 4th Pacific rim conference (pp. 175–182). Canberra: CSIRO.Google Scholar
  66. Food and Agriculture Organization of the United Nations (FAO). (2004). The state of food and agriculture 2003–2004. Rome: FAO. [Google Scholar].CrossRefGoogle Scholar
  67. Forster, B. P., Till, B. J., Ghanim, A. M. A., Huynh, H. O. A., Burstmayr, H., & Caligari, P. D. S. (2015). Accelerated plant breeding. CAB Reviews, 43, 1749–8848.Google Scholar
  68. Frisvold, G. B., & Reeves, J. M. (2011). Resistance management and sustainable use of agricultural biotechnology. AgBioforum, 10(1), 33–43.Google Scholar
  69. Fuchs, M. (2010). Plant resistance to viruses: Engineered resistance. In B. W. J. Mahy & M. H. V. van Regenmortel (Eds.), Desk Encyclopedia of plant and fungal virology (pp. 44–52). Amsterdam: Elsevier. [Google Scholar].Google Scholar
  70. Fundación Antama. (2016). Cultivo de maíz Bt ha permitido a España el ahorro de 193 millones de Euros en importaciones de maíz desde 1998. Fundación Antama. Consultado 25 de noviembre de 2016. Disponible en. www.fundación-altama.orgGoogle Scholar
  71. Gantzer, C. J., & Blake, G. R. (1978). Physical characteristics of a La Seur clay loam following no-till and conventional tillage. Agronomy Journal, 70, 853–857.CrossRefGoogle Scholar
  72. Ghosh, H. P., & Preiss, J. (1966). Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. The Journal of Biological Chemistry, 241, 4491–4504.PubMedPubMedCentralGoogle Scholar
  73. Goff, S. A., et al. (2002). A draft sequence of the rice genome (Orza sativa L. spp. japonica). Science, 296, 79–92.  https://doi.org/10.1126/science.1068275.CrossRefGoogle Scholar
  74. Goldberg, R., Rissler, J., Shand, H., & Hassebrook, C. (1990). Biotechnology’s bitter harvest. Washington, DC: Biotechnology Working Group.Google Scholar
  75. Grace, P. R., Harrington, L., Jain, M. C., & Robertson, G. P. (2003). Chapter 7: Long-term sustainability of the tropical and subtropical rice–wheat system: An environmental perspective. In J. K. Ladha, J. Hill, R. K. Gupta, J. Duxbury, & R. J. Buresh (Eds.), Improving the productivity and sustainability of rice– Wheat systems: Issues and impact (ASA special publications 65) (pp. 27–43). Madison: ASA.Google Scholar
  76. Habben, J. E., & Larkins, B. A. (1995). Improving protein quality in seeds. In J. Kigel & G. Galili (Eds.), Seed development and germination (pp. 791–810). New York: Marcel Dekker.Google Scholar
  77. Hacham, Y., Avraham, T., & Amir, R. (2002). The N-terminal region of Arabidopsis cystathionine gamma synthase plays an important role in methionine metabolism. Plant Physiology, 128, 454–462.  https://doi.org/10.1104/pp.128.2.454.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hagan, N. D., Upadhyaya, N., Tabe, L. M., & Higgins, T. J. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. The Plant Journal, 34, 1–11.  https://doi.org/10.1046/j.1365-313X.2003.01699.x.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hansson, S. O., & Joelsson, K. (2013). Crop biotechnology for the environment? Journal of Agricultural and Environmental Ethics, 26, 759–770. Google Scholar
  80. Hatfield, K. L., & Pruegar, J. H. (1996). Microclimate effects of crop residues on biological processes. Theoretical and Applied Climatology, 54, 47–59.  https://doi.org/10.1007/BF00863558.CrossRefGoogle Scholar
  81. Heenan, D. P., Chan, K. Y., & Knight, P. G. (2004). Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol. Soil and Tillage Research, 76, 59–68.  https://doi.org/10.1016/j.still.2003.08.005.CrossRefGoogle Scholar
  82. Hess, S., Lagerkvist, C. L., Redekop, W., & Pakseresht, A. (2013, August, 4–6). Consumers’ evaluation of biotechnology in food products: New evidence from a meta-survey. In Proceedings of the agricultural and applied economics association’s 2013 AAEA and CAES joint annual meeting. Washington, DC.Google Scholar
  83. Hillel, D. (1998). Environmental soil physics. San Diego: Academic.Google Scholar
  84. Hilson, P., et al. (2004). Versatile gene-specific sequence tags for Arabidopsis functional genomics: Transcript profiling and reverse genetics applications. Genome Research, 14, 2176–2189.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hirochika, H., et al. (2004). Rice mutant resources for gene discovery. Plant Molecular Biology, 54, 325–334.  https://doi.org/10.1023/B:PLAN.0000036368.74758.66.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Hobbs, P. R., & Gupta, R. K. (2003). Paper 7: Resource conserving technologies for wheat in rice–wheat systems. In J. K. Ladha, J. Hill, R. K. Gupta, J. Duxbury, & R. J. Buresh (Eds.), Improving the productivity and sustainability of rice–wheat systems: Issues and impact (ASA special publications) (Vol. 65, pp. 149–171). Madison: ASA.Google Scholar
  87. Hobbs, P. R., & Gupta, R. K. (2004). Paper 6: Problems and challenges of no-till farming for the rice–wheat systems of the Indo- Gangetic Plains in South Asia. In R. Lal, P. Hobbs, N. Uphoff, & D. O. Hansen (Eds.), Sustainable agriculture and the rice–wheat system (pp. 101–119). Columbus/New York: Ohio State University/Marcel Dekker, Inc. (see also pp. 120–121).CrossRefGoogle Scholar
  88. Hoffman, L., Donaldson, D. D., & Herman, E. M. (1988). A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Molecular Biology, 11(6), 717–729.PubMedCrossRefGoogle Scholar
  89. Howard, R. J. (1996). Cultural control of plant diseases: A historical perspective. Canadian Journal of Plant Pathology, 18, 145–150.CrossRefGoogle Scholar
  90. Huesing, J. E., Shade, R. E., Chrispeels, J. M., & Murdock, L. L. (1991). Alpha-Amylase, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiology, 96, 993–996.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Imsande, J. (2001). Selection of soybean mutants with increased concentrations of seed methionine and cysteine. Crop Science, 41, 510–515.CrossRefGoogle Scholar
  92. Jaipal, S., Singh, S., Yadav, A., Malik, R. K., & Hobbs, P. R. (2002). Species diversity and population density of macrofauna of rice–wheat cropping habitat in semi-arid subtropical northwest India in relation to modified tillage practices of wheat sowing. In R. K. Malik, R. S. Balyan, A. Yadav, & S. K. Pahwa (Eds.), Herbicide-resistance management and zero-tillage in the rice–wheat cropping system. Proceedings of the international workshop, Hissar, India, 4–6 March 2002 (pp. 166–171). Hissar: CCS Haryana University.Google Scholar
  93. James, M. G., Robertson, D. S., & Myers, A. M. (1995). Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell, 7, 417–429.  https://doi.org/10.1105/tpc.7.4.417.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Jaworski, J., & Cahoon, E. B. (2003). Industrial oils from transgenic plants. Current Opinion in Plant Biology, 6, 178–184.  https://doi.org/10.1016/S1369-5266(03)00013-X.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Jung, R., Martino-Catt, S., Towsend, J., & Beach, L. (1997). Expression of a sulfur rich protein in soybean seeds causes an altered seed protein composition. In 5th international congress on plant molecular biology, Singapore. Dordrecht: Kluwer Academic Publisher.Google Scholar
  96. Jung, W. S., Kim, K. H., Ahn, J. K., Hahn, S. J., & Chung, I. M. (2004). Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crusgalli. Crop Protection, 23, 211–218.  https://doi.org/10.1016/j.cropro.2003.08.019.CrossRefGoogle Scholar
  97. Kaniewski, W., & Thomas, P. E. (1993). Field testing of virus resistant transgenic plants. Seminars in Virology, 4, 389–396.CrossRefGoogle Scholar
  98. Keeler, S. J., Maloney, C. L., Webber, P. Y., Patterson, C., Hirata, L. T., Falco, S. C., & Rice, J. A. (1997). Expression of de novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of Lysine in mature seeds of transgenic tobacco plants. Plant Molecular Biology, 34(1), 15–29.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kennedy, A. C. (1999). Soil microorganisms for weed management. Journal of Crop Production, 2, 123–138.CrossRefGoogle Scholar
  100. Kohler, C., & Grossniklaus, U. (2002). Epigenetics: The flowers that come in from the cold. Current Biology, 12, 129.  https://doi.org/10.1016/S0960-9822(02)00705-4.CrossRefGoogle Scholar
  101. Kota, R., Spielmeyer, R. A., McIntosh, R. A., & Lagudah, E. S. (2006). Fine genetic mapping fails to dissiciate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticium aestivum L.). Theoretical and Applied Genetics, 112, 492–499.  https://doi.org/10.1007/s00122-005-0151-8.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Madox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., & Evola, S. V. (1993). Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 11, 194–200.Google Scholar
  103. Kubo, A., et al. (2004). Complementation of sugary-1 phenotype in rice endosperm with the wheat Isoamylase1 gene supports a direct role for Isoamylase1 in amylopectin biosynthesis. Plant Physiology, 137, 43–56.  https://doi.org/10.1104/pp.104.051359.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Kumar, K., & Goh, K. M. (2000). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield and nitrogen recovery. Advances in Agronomy, 68, 198–279.Google Scholar
  105. Lai, J. S., & Messing, J. (2002). Increasing maize seed methionine by mRNA stability. The Plant Journal, 30, 395–402.  https://doi.org/10.1046/j.1365-313X.2001.01285.x.CrossRefPubMedGoogle Scholar
  106. Lal, R. (1994). Sustainable land use systems and resilience. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use. Proceedings of a symposium held in Budapest, 28 September to 2 October 1992, including the second workshop on the ecological foundations of sustainable agriculture (WEFSA II) (pp. 99–118). Oxford: CAB International.Google Scholar
  107. Lal, R. (2001). Managing world soils for food security and environmental quality. Advances in Agronomy, 74, 155–192.CrossRefGoogle Scholar
  108. Lal, R. (2005). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation and Development, 17, 197–209.  https://doi.org/10.1002/ldr.696.CrossRefGoogle Scholar
  109. Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., & Ellis, J. G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 7, 1195–1206.  https://doi.org/10.1105/tpc.7.8.1195.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Leake, A. R. (2003). Integrated pest management for conservation agriculture. In L. Garcia-Torres, J. Benites, A. Martinez-Vilela, & A. Holgado-Cabrera (Eds.), Conservation agriculture: Environment, farmers experiences, innovations, socio-economy, policy (pp. 271–279). Dordrecht/Boston/London: Kluwer Academia Publishers.CrossRefGoogle Scholar
  111. Lee, T. T. T., Wang, M. M. C., Hou, R. C. W., Chen, L. J., Su, R. C., Wang, C. S., & Tzen, J. T. C. (2003). Enhancedmethionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2s albumin. Bioscience, Biotechnology, and Biochemistry, 67, 1699–1705.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Lee, S., Whitaker, V. M., & Hutton, S. F. (2016). Potential applications of non-host resistance for crop improvement. Frontiers in Plant Science, 7, 997.PubMedPubMedCentralGoogle Scholar
  113. Leustek, T., & Saito, K. (1999). Sulfate transport and assimilation in plants. Plant Physiology, 120, 637–644.  https://doi.org/10.1104/pp.120.3.637.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Logsdon, S., & Karlen, D. L. (2004). Bulk density as a soil indicator during conversion to no-tillage. Soil and Tillage Research, 78, 143–149.  https://doi.org/10.1016/j.still.2004.02.003.CrossRefGoogle Scholar
  115. Lukaszewski, A. J. (2000). Manipulation of the 1RS-1BL translocation in wheat by induced homoeologous recombination. Crop Science, 40, 216–225.CrossRefGoogle Scholar
  116. Madari, B., Machado, P. L. O. A., Torres, E., de Andrade, A. G., & Valencia, L. I. O. (2005). No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil and Tillage Research, 80, 185–200.CrossRefGoogle Scholar
  117. Maghari, B. M., & Ardekani, A. M. (2011). Genetically modified food and social concerns. Avicenna Journal of Medical Biotechnology, 3, 109–117.PubMedPubMedCentralGoogle Scholar
  118. Mago, R., Miah, H., Lawrence, G. J., Wellings, C. R., Spielmeyer, W., Bariana, H. S., McIntosh, R. A., Pryor, A. J., & Ellis, J. G. (2005a). High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics, 112, 41–50.  https://doi.org/10.1007/s00122-005-0098-9.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Mago, R., Bariana, H. S., Dundas, I. S., Spielmeyer, W., Lawrence, G. J., Pryor, A. J., & Ellis, J. G. (2005b). Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 111, 496–504.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mahanty, T., Bhattacharjee, S., Goswami, M., et al. (2016). Biofertilizers: A potential approach for sustainable agriculture development. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-016-8104-0.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Mills, E. N. C., Madsen, C., Shewry, P. R., & Wicher, H. J. (2003). Food allergens of plant origin—Their molecular and evolutionary relationships. Trends in Food Science and Technology, 14, 145–156.  https://doi.org/10.1016/S0924-2244(03)00026-8.CrossRefGoogle Scholar
  122. Morell, M. K., & Myers, A. M. (2005). Towards the rational design of cereal starches. Current Opinion in Plant Biology, 8, 204–210.  https://doi.org/10.1016/j.pbi.2005.01.009.CrossRefPubMedGoogle Scholar
  123. Morell, M. K., et al. (2003). Barley sex 6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 34, 173–185.  https://doi.org/10.1046/j.1365-313X.2003.01712.x.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Mouille, G., Maddelein, M.-L., Libessart, N., Talaga, P., Decq, A., Delrue, B., & Ball, S. (1996). Phytoglycogen processing: A mandatory step for starch biosynthesis in plants. Plant Cell, 8, 1353–1366.  https://doi.org/10.1105/tpc.8.8.1353.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Muntz, K., Christov, V., Jung, R., Saalbach, G., Saalbach, I., Waddell, D., Pickardt, T., & Schieder, O. (1997). Geneticengineering of high methionine proteins in grain legumes. In L. D. K. De Kok, W. J. Cram, I. Stulen, C. Brunold, H. Rennenberg, et al. (Eds.), Sulfur metabolism in higher plants: Molecular, ecophysiological and nutritional aspects (pp. 295–297). Leiden: Backhuys Publishers.Google Scholar
  126. Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.  https://doi.org/10.1038/nature01610.CrossRefPubMedGoogle Scholar
  127. Myers, A. M., Morell, M. K., James, M. G., & Ball, S. G. (2000). Recent progress toward understanding the biosynthesis of the amylopectin crystal. Plant Physiology, 122, 989–998.  https://doi.org/10.1104/pp.122.4.989.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Nakamura, Y., Umemoto, T., Takahata, Y., Komae, K., Amano, E., & Satoh, H. (1996). Changes in structure of starch and enzyme activities affected by sugary mutations. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiologia Plantarum, 97, 491–498.  https://doi.org/10.1111/j.1399-3054.1996.tb00508.x.CrossRefGoogle Scholar
  129. Nakamura, A., Nakajima, N., Goda, H., Shimada, Y., Hayashi, K.-i., Nozaki, H., Asami, T., Yoshida, S., & Fujioka, S. (2006). Arabidopsis genes are involved in brassinosteroidmediated growth responses in a manner dependent on organ type. The Plant Journal, 45(2), 193–205.Google Scholar
  130. Nogata, Y., Nagamine, T., & Sekiya, K. (2011). Antihypertensive effect of angiotensin Iconverting enzyme inhibitory peptides derived from wheat bran in spontaneously hypertensive rats. Journal of the Japanese Society For Food Science and Technology, 58, 67–70.Google Scholar
  131. Oeller, P., Min-Wong, L., Taylor, L., Pike, D., & Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254, 437–439.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Overton, M. (1996). Agricultural revolution in England: The transformation of agrarian economy 1500–1850. New York: Cambrige University Press.CrossRefGoogle Scholar
  133. PALT – Plataforma Andalucía libre de transgénicos. (2014). Impacto de los cultivos y alimentos trangenicos sobre la salud. Inseguridad, opacidad e irresponsabilidad. Editorial PALT. Sevilla (Andalucia) España.Google Scholar
  134. Perlak, F., Deaton, R., Armstrong, T., Fuchs, R., Sims, S., Greenplate, J., & Fischhoff, D. (1990). Insect resistant cotton plants. Bio/Technology, 8, 939–943.PubMedPubMedCentralGoogle Scholar
  135. Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., & Fischhoff, D. A. (1993). Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Molecular Biology, 22, 313–321.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Persley, G. J. (1991). Beyond Mendel’s garden: Biotechnology in the service of agriculture. Gran Bretaña: Bookcraft.Google Scholar
  137. Peters, C. J. (2000). Genetic engineering in agriculture: Who stands to benefit? Journal of Agricultural and Environmental Ethics, 13, 313–327. [Google Scholar] [CrossRef].CrossRefGoogle Scholar
  138. Pigott, C. R., & Ellar, D. J. (2007). Role of receptor in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255e281.CrossRefGoogle Scholar
  139. Ravindran, V., Tabe, L. M., Molvig, L., Higgins, T. J. V., & Bryden, W. L. (2002). Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L.) with broiler chickens. Journal of Science and Food Agriculture, 82, 280–285.  https://doi.org/10.1002/jsfa.1030.CrossRefGoogle Scholar
  140. Regina, A., et al. (2004). Multiple isoforms of starch branching enzyme 1 in wheat: Lack of the major SBE 1 isoforms does not alter starch phenotype. Functional Plant Biology, 31, 591–601.  https://doi.org/10.1071/FP03193.CrossRefGoogle Scholar
  141. Regina, A., et al. (2006). High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America, 103, 3546–3551.  https://doi.org/10.1073/pnas.0510737103.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Riley, H. C. F., Bleken, M. A., Abrahamsen, S., Bergjord, A. K., & Bakken, A. K. (2005). Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in cool, wet climate of Central Norway. Soil and Tillage Research, 80, 79–93.CrossRefGoogle Scholar
  143. Rogowsky, P. M., Guidet, F. L. Y., Langridge, P., Shepard, K. W., & Koebner, R. M. D. (1991). Isolation and characterization of wheat–rye recombinants involving chromosome arm IDS of wheat. Theoretical and Applied Genetics, 82, 537–544.  https://doi.org/10.1007/BF00226788.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Roldan, A., Caravaca, F., Hernandez, M. T., Garcia, C., Sanchez-Brito, C., Velasquez, M., & Tiscareno, M. (2003). No-tillage, crop residue additions, legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil and Tillage Research, 72, 65–73.CrossRefGoogle Scholar
  145. Roush, R. T. (1997). Managing resistance to transgenic crops. In N. Carrozi & M. Koziel (Eds.), Advances in insect control: The role of transgenic plants (pp. 271–294). London: Taylor and Francis.Google Scholar
  146. Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T., & Christou, P. (2011). Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 6, 133e138.Google Scholar
  147. Sayanova, O., & Napier, J. A. (2004). Eicosapentaenoic acid: Biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry, 65, 147–158.  https://doi.org/10.1016/j.phytochem.2003.10.017.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sayre, K. D., & Hobbs, P. R. (2004). Paper 20: The raised-bed system of cultivation for irrigated production conditions. In R. Lal, P. Hobbs, N. Uphoff, & D. O. Hansen (Eds.), Sustainable agriculture and the rice–wheat system (pp. 337–355). Columbus: Ohio State University.CrossRefGoogle Scholar
  149. Schulze-Lefert, P., & Panstruga, R. (2011). A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science, 16, 117–125.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 1121–1133.  https://doi.org/10.1105/tpc.105.039834.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Schweiger, R., & Schwenkert, S. (2014). Protein-protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves. Journal of Visualized Experiments, 85, 51327.Google Scholar
  152. Shah, D., Horsch, R., Klee, H., Kishore, G., Winter, J., Tumer, N., Hironaka, C., Sanders, P., Gasser, C., Aykent, S., Siegel, N., Rogers, S., & Fraley, R. (1986). Engineering herbicide tolerance in transgenic plants. Science, 233, 478–481.PubMedCrossRefGoogle Scholar
  153. Shen, B., Li, C., & Tarczynski, M. C. (2002). High freemethionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. The Plant Journal, 29, 371–380.  https://doi.org/10.1046/j.1365-313X.2002.01221.x.CrossRefPubMedGoogle Scholar
  154. Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., & Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 15, 732–744.  https://doi.org/10.1105/tpc.009258.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Shewmaker, C. K., Boyer, C. D., Wiesenborn, D. P., Thompson, D. B., Boersig, M. R., Oakes, J. V., & Stalker, D. M. (1994). Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes (Solanum tuberosum) results in a highly branched starch. Plant Physiology, 104, 1159–1166.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Simopoulos, A. P. (2003). Importance of the ratio of omega- 6/omega-3 essential fatty acids: Evolutionary aspects. World Review of Nutrition and Dietetics, 92, 1–22.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Singh, R. P., Nelson, J. C., & Sorrells, M. E. (2000a). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40, 1148–1155.CrossRefGoogle Scholar
  158. Singh, S., Thomaeus, S., Lee, M., Stymne, S., & Green, A. (2000b). Transgenic expression of a D12-epoxygenase in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta, 212, 872–879.CrossRefGoogle Scholar
  159. Sorek, N., Yeats, T. H., Szemenyei, H., Youngs, H., & Somerville, C. R. (2014). The implications of Lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience, 64, 192–201.  https://doi.org/10.1093/biosci/bit037.CrossRefGoogle Scholar
  160. Spielmeyer, W., Sharp, P. J., & Lagudah, E. S. (2003). Identification and validation of markers linked to broadspectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science, 43, 333–336.Google Scholar
  161. Srichumpa, P., Brunner, S., Keller, B., & Yahiaoui, N. (2005). Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiology, 139, 885–895.  https://doi.org/10.1104/pp.105.062406.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Stalker, D., McBride, K., & Malyj, L. (1988). Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science, 242, 419–422.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Swaminathan, S., Abeysekara, N. S., Liu, M., Cianzio, S. R., & Bhattacharyya, M. K. (2016). Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. Theoretical and Applied Genetics, 129, 495–506.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Swanson, S. P., & Wilhelm, W. W. (1996). Planting date and residue rate effects on growth, partitioning and yield of corn. Agronomy Journal, 88, 205–210.CrossRefGoogle Scholar
  165. Swarup, S., Timmermans, M. C. P., Chaudhuri, S., & Messing, J. (1995). Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. The Plant Journal, 8, 359–368.  https://doi.org/10.1046/j.1365-313X.1995.08030359.x.CrossRefPubMedPubMedCentralGoogle Scholar
  166. Tabashnik, B. E., Dennehy, T. J., & Carriere, Y. (2005). Delayed resistance to transgenic cotton of pinkbollworm. Proceedings of the National Academy of Sciences of the United States of America, 102, 15389–15393.  https://doi.org/10.1073/pnas.0507857102.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Tabashnik, B. E., Huang, F., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Rangasamy, M., Yang, Y., Wu, Y., Gahan, L. J., Heckel, D. G., Bravo, A., & Soberón, M. (2011). Efficacy of genetically modified BT toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology, 29(12), 1128–1131.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Tabe, L., & Droux, M. (2002). Limits to sulfur accumulation in transgenic Lupin seeds expressing a foreign sulfur-rich protein. Plant Physiology, 128, 1137–1148.  https://doi.org/10.1104/pp.010935.CrossRefPubMedPubMedCentralGoogle Scholar
  169. Tabe, L., & Higgins, T. (1998). Engineering plant protein composition for improved nutrition. Trends in Plant Science, 3, 282–286.  https://doi.org/10.1016/S1360-1385(98)01267-9.CrossRefGoogle Scholar
  170. Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., Stall, R. E., & Staskawicz, B. J. (1999a). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 153–14 158.  https://doi.org/10.1073/pnas.96.24.14153.CrossRefGoogle Scholar
  171. Tai, S. S. K., Wu, L. S. H., Chen, E. C. F., & Tzen, J. T. C. (1999b). Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in sesame. Journal of Agricultural and Food Chemistry, 47, 4932–4938.  https://doi.org/10.1021/jf990366z.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Teh, O. K., & Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65, 1297–1312.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Teranishi, R. (Ed.). (1978). Agricultural and food chemistry past, present, future (p. 65). EstadosUnidos: Department of Agriculture.Google Scholar
  174. Tetlow, I. J., Wait, R., Lu, Z., Akkasaeng, R., Bowsher, C. G., Esposito, S., Kosar-Hashemi, B., Morell, M. K., & Emes, M. (2004a). Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein– Protein interactions. Plant Cell, 16, 694–708.  https://doi.org/10.1105/tpc.017400.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tetlow, I. J., Morell, M. K., & Emes, M. J. (2004b). Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, 55, 2131–2145.  https://doi.org/10.1093/jxb/erh248.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Then, C., & Bauer-Panskus, A. (2017). Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA. Environmental Sciences Europe, 29, 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Thompson, P. B. (2010). The agrarian vision: Sustainability and environmental ethics. Lexington: The University Press of Kentucky. [Google Scholar].CrossRefGoogle Scholar
  178. Thompson, R. P. (2011). Agro-technology: A philosophical introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  179. Umemoto, T., Yano, M., Satoh, H., Shomura, A., & Nakamura, Y. (2002). Mapping of a gene responsible for the difference in amylopectin structure between japonicatype and indica-type rice varieties. Theoretical and Applied Genetics, 104, 1–8.  https://doi.org/10.1007/s001220200000.CrossRefPubMedPubMedCentralGoogle Scholar
  180. Unger, P. W., Langdale, D. W., & Papendick, R. I. (1988). In W. L. Hargrove (Ed.), Role of crop residues—Improving water conservation and use. Cropping strategies for efficient use of water and nitrogen (Vol. 51, pp. 69–100). Madison: American Society of Agronomy.Google Scholar
  181. Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inze, D., Reupold-Popp, P., Sandermann, H., Jr., & Langebartels, C. (1994). Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology, 12, 165–168.Google Scholar
  182. Varshney, R. K., & Dubey, A. (2009). Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology, 18, 127–138.CrossRefGoogle Scholar
  183. Varshney, R. K., & Tuberosa, R. e. (2007). Genomics-assisted crop improvement: Genomics approaches and platforms (Vol. I). Dordrecht: Springer.CrossRefGoogle Scholar
  184. Voelker, T. A., Hayes, T. R., Cranmer, A. M., Turner, J. C., & Davies, H. M. (1996). Genetic engineering of a quantitative trait: Metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. The Plant Journal, 9, 229–241.  https://doi.org/10.1046/j.1365-313X.1996.09020229.x.CrossRefGoogle Scholar
  185. Wang, M., & Waterhouse, P. M. (2002). Application of gene silencing in plants. Current Opinion in Plant Biology, 5, 146–150.  https://doi.org/10.1016/S1369-5266(02)00236-4.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Waters, D. M., Mauch, A., Coffey, A., Arendt, E. K., & Zannini, E. (2015). Lactic acid Bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review. Critical Reviews in Food Science and Nutrition, 55(4), 503–320.PubMedCrossRefGoogle Scholar
  188. White, C. L., et al. (2001). Increased efficiency of wool growth and live weight gain in merino sheep fed transgenic Lupin seed containing sunflower albumin. Journal of Science and Food Agriculture, 81, 147–154.  https://doi.org/10.1002/1097-0010(20010101)81:1!147::AID-JSFA751O3.0.CO;2-E.CrossRefGoogle Scholar
  189. Wilson, L. J., Mensah, R. K., & Fitt, G. P. (2004). Implementing IPM in Australian cotton. In A. Rami Horowitz & I. Ishaaya (Eds.), Novel approaches to insect pest management in field and protected crops (pp. 97–118). Berlin: Springer.Google Scholar
  190. Wu, Y., Machado, A. C., White, R. G., Llewellyn, D. J., & Dennis, E. S. (2006). Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant & Cell Physiology, 47, 107–127.  https://doi.org/10.1093/pcp/pci228.CrossRefGoogle Scholar
  191. Yamamori, M., Fujita, S., Hayakawa, K., Matsuki, J., & Yasui, T. (2000). Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics, 101, 21–29.  https://doi.org/10.1007/s001220051444.CrossRefGoogle Scholar
  192. Zamora, A. L. (2016). Los OMG’s lograron en 2014 un incremento medio de los ingresos de los agricultores de 90 euros hectárea. Fundación Antama. Consultado el 25 deNoviembre de 2016. Disponible en. www.fundación-altama.orgGoogle Scholar
  193. Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., & Chen, J. (1998). A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell, 10, 1699–1712.  https://doi.org/10.1105/tpc.10.10.1699.CrossRefPubMedPubMedCentralGoogle Scholar
  194. Zhang, X., Myers, A. M., & James, M. G. (2005). Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiology, 138, 663–674.  https://doi.org/10.1104/pp.105.060319.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Zhou, X. R., Singh, S., Liu, Q., & Green, A. (2006). Combined transgenic expression of D12-desaturase and D12-epoxygenase in high linoleic substrate seed oil leads to increased accumulation of vernolic acid. Functional Plant Biology, 33, 585–592.  https://doi.org/10.1071/FP05297.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations