Advertisement

Aptamers pp 59-71 | Cite as

Aptamer: Apt System for Target-Specific Drug Delivery

  • Meenu Goyal
  • Citu
  • Nidhi Singh
  • Varsha Singla
  • Ankit Singla
Chapter

Abstract

The delivery and binding of the therapeutic molecules like drugs, siRNAs and toxins to their specific target is a challenging task. Poor efficacy and off target binding are major problems associated with current approaches for targeted delivery of therapeutic molecules. Therefore, to avoid off target binding, target specific delivery systems are urgently required. Over the years, aptamers have become attractive molecules for targeted delivery of drugs. Aptamers are defined as small, single-stranded DNA/RNA or peptides which can bind to the specific targets with better affinity. The therapeutic molecules can either conjugate directly to the aptamers or along with some carrier molecules like liposomes, antibodies and nanoparticles to achieve specific targeted delivery. The present book chapter will focus on aptamer mediated target specific delivery of drugs, toxins and siRNAs- both direct conjugation with aptamer and in association with carriers.

Keywords

Aptamer Conjugates Drug delivery 

References

  1. Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F (2015) Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 479:241–251PubMedCrossRefGoogle Scholar
  2. Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E (2015) Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug Chem 26:1307–1313PubMedCrossRefGoogle Scholar
  3. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232PubMedCrossRefGoogle Scholar
  4. Baek SE, Lee KH, Park YS, Oh DK, Oh S, Kim KS, Kim DE (2014) RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release 196:234–242. (CrossRef) (PubMed)PubMedCrossRefGoogle Scholar
  5. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45:8149–8152. (PubMed: 17099918)PubMedCrossRefGoogle Scholar
  6. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070. (PubMed: 17854227)PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bleickardt E, Argiris A, Rich R, Blum K, McKeon A, Tara H, Zelterman D, Burtness B, Davies MJ, Murren JR (2002) Phase I dose escalation trial of weekly docetaxel plus irinotecan in patients with advanced cancer. Cancer Biol Ther 1:646–651. (PubMed: 12642688)PubMedCrossRefGoogle Scholar
  8. Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl 48:6494–6498. (CrossRef) (PubMed)PubMedCrossRefGoogle Scholar
  9. Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49–60PubMedGoogle Scholar
  10. Chu TC, Marks JW 3rd, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M (2006a) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992. (PubMed: 16778167)PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chu TC, Twu KY, Ellington AD, Levy M (2006b) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73. (PubMed: 16740739)PubMedPubMedCentralCrossRefGoogle Scholar
  12. Das M, Duan W, Sahoo SK (2015) Multifunctional nanoparticle–EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy. Nanomed Nanotechnol Biol Med 11:379–389CrossRefGoogle Scholar
  13. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849. (PubMed: 19701187)PubMedPubMedCentralCrossRefGoogle Scholar
  14. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782. (PubMed: 18758474)PubMedCrossRefGoogle Scholar
  15. Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X et al (2015) Aptamer mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep 5:7851PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105:17356–17361.  https://doi.org/10.1073/pnas.0809154105CrossRefPubMedPubMedCentralGoogle Scholar
  17. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. (PubMed: 11373684)PubMedCrossRefGoogle Scholar
  18. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. (PubMed: 1697402)PubMedPubMedCentralCrossRefGoogle Scholar
  19. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006a) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320. (PubMed: 16606824)PubMedPubMedCentralCrossRefGoogle Scholar
  20. Farokhzad OC, Karp JM, Langer R (2006b) Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 3:311–324. (PubMed: 16640493)PubMedCrossRefGoogle Scholar
  21. Fickert H, Fransson IG, Hahn U (2006) Aptamers to small molecules. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH, Weinheim, pp 94–115CrossRefGoogle Scholar
  22. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. (PubMed: 9486653)PubMedCrossRefGoogle Scholar
  23. Gehl J, Boesgaard M, Paaske T, Jensen BV, Dombernowsky P (1996) Paclitaxel and doxorubicin in metastatic breast cancer. Semin Oncol 23:35–38. (PubMed: 8996596)PubMedGoogle Scholar
  24. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K, Shima T (2013) Observations of immuno-goldconjugatesoninfluenzavirusesusing waveguide-mode sensors. PLoS One 8:1–10.  https://doi.org/10.1371/journal.pone.0069121CrossRefGoogle Scholar
  25. Herrmann A, Priceman SJ, Kujawski M, Xin H, Cherryholmes GA, Zhang W et al (2014) CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest 124:2977–2987PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hong Y, Lee E, Ku M, Suh JS, Yoon DS, Yang J (2016) Femto-molar detection of cancer marker-protein based on immunonanoplasmonics at single-nanoparticle scale. Nanotechnology 27:185103PubMedCrossRefGoogle Scholar
  27. Hu Y, Duan J, Zhan Q, Wang F, Lu X, Da Yang X (2012) Novel muc1aptamer selectively delivers cytotoxic agentto cancer cells in vitro. PLoS One 7:e31970PubMedPubMedCentralCrossRefGoogle Scholar
  28. Huang YF, Chang HT, Tan WH (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572. (PubMed: 18166023)PubMedCrossRefGoogle Scholar
  29. Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10:862–868. (PubMed: 19253922)PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, Zand Karimi M et al (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50:191–197PubMedCrossRefGoogle Scholar
  31. Kang S, Hah SS (2014) Improved ligand binding by antibodyaptamer pincers. Bioconjug Chem 25:1421–1427PubMedCrossRefGoogle Scholar
  32. Kang H, O’Donoghue MB, Liu H, Tan WA (2010) Liposome based nanostructure for aptamer directed delivery. Chem Commun (Camb) 46:249–251. (CrossRef) (PubMed)CrossRefGoogle Scholar
  33. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. (PubMed: 20592747)CrossRefGoogle Scholar
  34. Kim E, Jung Y, Choi H, Yang J, Suh JS, Huh YM, Kim K, Haam S (2010a) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599. (PubMed: 20206379)PubMedCrossRefGoogle Scholar
  35. Kim D, Jeong YY, Jon S (2010b) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696. (PubMed: 20550178)CrossRefGoogle Scholar
  36. Lale SV, Aswathy RG, Aravind A, Kumar DS, Koul V (2014) AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA−PCL−pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. BioMacromoluecules ASAP 15:1737–1752CrossRefGoogle Scholar
  37. Leach JC, Wang A, Ye K, Jin S (2016) A RNA-DNA hybrid aptamer for nanoparticle-based prostate tumor targeted drug delivery. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17030380PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62:592–605. (PubMed: 20338204)PubMedPubMedCentralCrossRefGoogle Scholar
  39. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449. (PubMed: 18571753)PubMedCrossRefGoogle Scholar
  40. Li N, Larson T, Nguyen HH, Sokolov KV, Ellington D (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46:392–394CrossRefGoogle Scholar
  41. Li L, Xiang D, Shigdar S, Yang W, Li Q, Lin J et al (2014a) Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 9:1083–1096PubMedPubMedCentralCrossRefGoogle Scholar
  42. Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M et al (2014b) Goldcoated Fe 3 O 4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Funct Mater 24:1772–1780PubMedPubMedCentralCrossRefGoogle Scholar
  43. Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L et al (2014c) Nucleolintargeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35:3840–3850PubMedCrossRefGoogle Scholar
  44. Li X, Yu Y, Ji Q, Qiu L (2015) Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine 11:175–184PubMedCrossRefGoogle Scholar
  45. Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495. (PubMed: 12236360)PubMedCrossRefGoogle Scholar
  46. Liu N, Zhou C, Zhao J, Chen Y (2012a) Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera. Cancer Investig 30:577–582CrossRefGoogle Scholar
  47. Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X et al (2012b) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148PubMedPubMedCentralCrossRefGoogle Scholar
  48. Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang XJ (2016) Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91:44–56PubMedCrossRefGoogle Scholar
  49. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033. (PubMed: 12124337)PubMedGoogle Scholar
  50. McMahon KS, Wieman TJ, Moore PH, Fingar VH (1994) Effects of photodynamic therapy using monoL-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res 54:5374–5379. (PubMed: 7923168)PubMedGoogle Scholar
  51. McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015. (PubMed: 16823371)CrossRefGoogle Scholar
  52. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342. (PubMed: 1537204)PubMedCrossRefGoogle Scholar
  53. Meng L, Yang L, Zhao X, Zhang L, Zhu H, Liu C et al (2012) Targeted delivery of chemotherapy agents using a liver cancerspecific aptamer. PLoS One 7:e33434PubMedPubMedCentralCrossRefGoogle Scholar
  54. Miller VA, Kris MG (2002) Docetaxel (Taxotere) as a single agent and in combination chemotherapy for the treatment of patients with advanced non-small cell lung cancer. Semin Oncol 27:3–10. (PubMed: 10810932)Google Scholar
  55. Min K, Jo H, Song K, Cho M, Chun YS, Jon S, Kim WJ, Ban C (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32:2124–2132. (PubMed: 21147500)PubMedCrossRefGoogle Scholar
  56. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H et al (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci Transl Med 3:1–20CrossRefGoogle Scholar
  57. Nimjee SM, Rusconi CP, Sullenger BA (2006) Aptamers to proteins. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH, Weinheim, pp 131–166CrossRefGoogle Scholar
  58. Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474PubMedCrossRefGoogle Scholar
  59. Porciani D, Tedeschi L, Marchetti L, Citti L, Piazza V, Beltram F, Signore G (2015) Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Mol Ther Nucleic Acids 4:e235PubMedPubMedCentralCrossRefGoogle Scholar
  60. Qiu L, Chen T, Öçsoy I, Yasun E, Wu C, Zhu G et al (2015) A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett 15:457–463PubMedCrossRefGoogle Scholar
  61. Ray P, Cheek MA, Sharaf ML, Li N, Ellington AD, Sullenger BA et al (2012) Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther 22:295–305PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sayari E, Dinarvand M, Amini M, Azhdarzadeh M, Mollarazi E, Ghasemi Z et al (2014) MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm 473:304–315PubMedCrossRefGoogle Scholar
  63. Sedletska Y, Giraud-Panis MJ, Malinge JM (2005) Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents 5:251–265. (PubMed: 15992353)PubMedCrossRefGoogle Scholar
  64. Shiao Y, Chiu H, Wu P, Huang Y (2014) Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl Mater Interfaces 6:21832–21841PubMedCrossRefGoogle Scholar
  65. Shieh YA, Yang SJ, Wei MF, Shieh MJ (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442. (PubMed: 20166743)PubMedCrossRefGoogle Scholar
  66. Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GLR et al (2010) Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 49:9106–9112PubMedPubMedCentralCrossRefGoogle Scholar
  67. Stirpe F, Olsnes S, Pihl A (1980) Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 255:6947–6953. (PubMed: 7391060)PubMedGoogle Scholar
  68. Stuart CH, Singh R, Smith TL, D’Agostino R Jr, Caudell D, Balaji KC, Gmeiner WH (2016) Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn2+ chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine (Lond) 11:1207–1222CrossRefGoogle Scholar
  69. Subramanian N, Raghunathan V, Kanwar JR, Kanwar RK, Elchuri SV, Khetan V et al (2012) Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol Vis 18:2783–2795PubMedPubMedCentralGoogle Scholar
  70. Taber SW, Fingar VH, Coots CT, Wieman TJ (1998) Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a phase I clinical study. Clin Cancer Res 4:2741–2746. (PubMed: 9829737)PubMedGoogle Scholar
  71. Taghdisi SM, Abnous K, Mosaffa F, Behravan J (2010) Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 18:277–281. (PubMed: 19943768)PubMedCrossRefGoogle Scholar
  72. Toma S, Palumbo R, Sogno G, Venturino A, Santi L (1992) Doxorubicin (or epidoxorubicin) combined with ifosfamide in the treatment of adult advanced soft tissue sarcomas. Ann Oncol 3(Suppl 2):S119–S123. (PubMed: 1622853)PubMedCrossRefGoogle Scholar
  73. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. (PubMed: 2200121)PubMedPubMedCentralCrossRefGoogle Scholar
  74. Visani G, Isidori A (2011) Doxorubicin variants for hematological malignancies. Nanomedicine (Lond) 6:303–306. (PubMed: 21385131)CrossRefGoogle Scholar
  75. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem Med Chem 3:1311–1315. (PubMed: 18613203)PubMedCrossRefGoogle Scholar
  76. Wang K, Yao H, Meng Y, Wang Y, Yan X, Huang R (2015) Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater 16:196–205PubMedCrossRefGoogle Scholar
  77. Wilner SE, Levy M (2016) Synthesis and characterization of aptamer-targeted SNALPs for the delivery of siRNA. Methods Mol Biol 1380:211–224PubMedCrossRefGoogle Scholar
  78. Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 8:554–565. (PubMed: 18991566)PubMedCrossRefGoogle Scholar
  79. Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM et al (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704.  https://doi.org/10.1021/nn204165vCrossRefPubMedPubMedCentralGoogle Scholar
  80. Xing H, Tang L, Yang X, Hwang K, Wang W, Yin Q et al (2013) Selective delivery of an anticancer drug with aptamerfunctionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Biol Med 1:5288–5297PubMedPubMedCentralCrossRefGoogle Scholar
  81. Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H et al (2013) Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34:5244–5253PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ye M, Hu J, Peng M, Liu J, Liu J, Liu H, Zhao X, Tan W (2012) Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 13:3341–3353PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, Yang XDA (2011a) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6:1–8.  https://doi.org/10.1371/journal.pone.0024077CrossRefGoogle Scholar
  84. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011b) Imageguided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249PubMedCrossRefGoogle Scholar
  85. Zhang H, Hou L, Jiao X, Yandan J (2014) In vitro and in vivo evaluation of antitumor drug-loaded aptamer targeted singlewalled carbon nanotubes system. Curr Pharm Biotechnol 14(13):1105–1117.  https://doi.org/10.2174/1389201015666140408123710CrossRefPubMedGoogle Scholar
  86. Zhao N, You J, Zeng Z, Li C, Zu Y (2013) An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small 9:3477–3484PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhou J, Li H, Zhang J, Piotr S, Rossi J (2011) Development of cell type specific anti-HIV gp120 aptamers for siRNA delivery. J Vis Exp:1–9.  https://doi.org/10.3791/2954
  88. Zhou C, Chen T, Wu C, Zhu G, Qiu L, Cui C, Hou W, Tan W (2015) Aptamer-CaCO3 nanostructures: a facile, pH-responsive, specific platform for targeted anticancer theranostics. Chem Asian J 10:1199–1216Google Scholar
  89. Zhu Q, Shibata T, Kabashima T, Kai M (2012) Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur J Med Chem 56:396–399PubMedCrossRefGoogle Scholar
  90. Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Kramer S, Altmann A, Eisenhut M, Haberkorn U (2005) A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11:139–146. (PubMed: 15671538)PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Meenu Goyal
    • 1
  • Citu
    • 1
  • Nidhi Singh
    • 2
  • Varsha Singla
    • 3
  • Ankit Singla
    • 4
  1. 1.Department of BiotechnologyCentral University of HaryanaMahendergarhIndia
  2. 2.Institute of Advanced StudyShenzhen UniversityShenzhenChina
  3. 3.TFSL, Dairy Microbiology DivisionICAR-National Dairy Research InstituteKarnalIndia
  4. 4.Regional Centre of Organic Farming, Department of Agriculture, Cooperation and Farmers WelfareMinistry of Agriculture and Farmers WelfareBhubaneswarIndia

Personalised recommendations