Advertisement

Aptamers pp 37-57 | Cite as

Aptamer: A Futuristic Approach in Diagnosis Rivaling Antibodies

  • Ruchi Mutreja
  • Pardeep Kumar
  • Anupama Semwal
  • Shubham Jain
  • Rajat Dhyani
  • Rupesh Agarwal
  • Umesh Chand
  • Shahnawaz Ahmad Baba
  • Naveen K. Navani
  • Piyush KumarEmail author
Chapter

Abstract

Antibodies have been known for more than three decades and have proved to be invaluable tool for rapid and advanced diagnostics. Although, antibodies are used routinely in most of diagnostic tests as biorecognition elements, however, their high cost of production, shorter-shelf life, animal requirement for production, stability issues, batch-to-batch variations had significant drawbacks on the field of diagnostics. Aptamers are short oligonucleotides of less 100 nucleotides that bind selectively and specifically with high affinity to their targets, ranging from small molecule like a toxin to a large cancerous cells, due to their unique 3-D conformational. Combining aptamers with different nanostructures has elevated their diagnostic capability and made them highly useful in various biosensing platforms. Some of the biosensing assays like ELASA, Colorimetry, Electrochemical, Microfluidics, Lateral flow, etc. using aptamers and their modified forms with nanostructures are expatiated in the present chapter. In addition, the limitations and benefits of these assays are also discussed.

Keywords

Aptamers Diagnostics Optical Electrochemical Lateral flow Microfluidics 

Notes

Acknowledgments

RM acknowledge SERB-NPDF for financial assistance.

References

  1. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155.  https://doi.org/10.1016/j.bios.2014.12.040CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allali-Hassani A, Pereira MP, Navani NK, Brown ED, Li Y (2007) Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. Chembiochem 8:2052–2057.  https://doi.org/10.1002/cbic.200700257CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babaei M, Ganjalikhani M (2014) A systematic review of gold nanoparticles as novel cancer therapeutics. Nanomed J 1:211–219Google Scholar
  4. Bala R, Sharma RK, Wangoo N (2016) Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Anal Bioanal Chem 408:333–338PubMedCrossRefPubMedCentralGoogle Scholar
  5. Balamurugan S, Obubuafo A, Soper SA, Spivak DA (2008) Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 390:1009–1021.  https://doi.org/10.1007/s00216-007-1587-2CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldrich E, Acero JL, Reekmans G, Laureyn W, O’Sullivan CK (2005) Displacement enzyme linked aptamer assay. Anal Chem 77:4774–4784PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2011) Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Control 22:737–743CrossRefGoogle Scholar
  8. Beck JJ, Beebe JR, Stewart SJ, Bassin C, Etienne L (1996) Colorimetric PCR and ELISA diagnostics for the detection of Pseudocercosporella herpotrichoides in field samples. Brighton Crop Prot Conf Pests Dis 1:221–226Google Scholar
  9. Berson SA, Yalow RS (1959) Quantitative aspects of the reaction between insulin and insulin-binding antibody. J Clin Invest 38:1996–2016PubMedPubMedCentralCrossRefGoogle Scholar
  10. Borghei Y-S, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta 904:92–97PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bruno JG (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens 3:341–355PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bruno JG, Carrillo MP, Phillips T (2007) Effects of immobilization chemistry on enzyme-linked aptamer assays for Leishmania surface antigens. J Clin Ligand Assay 30:1–2Google Scholar
  13. Bruno JG, Carrillo MP, Richarte AM, Phillips T, Andrews C, Lee JS (2012) Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 5:633PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bruno JG, Richarte AM, Phillips T, Savage AA, Sivils JC, Greis A, Mayo MW (2014) Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid Leishmania detection in sandflies. J Fluoresc 24:267–277PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen F, Hu Y, Li D, Chen H, Zhang X-L (2009) CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4:e8142PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen X, Huang Y, Ma X, Jia F, Guo X, Wang Z (2015) Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchim Acta 182:1709–1714.  https://doi.org/10.1007/s00604-015-1492-xCrossRefGoogle Scholar
  19. Chen M et al (2016a) Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim Acta 183:1099–1106.  https://doi.org/10.1007/s00604-015-1695-1CrossRefGoogle Scholar
  20. Chen Z, Tan L, Hu L, Zhang Y, Wang S, Lv F (2016b) Real colorimetric thrombin aptasensor by masking surfaces of catalytically active gold nanoparticles. ACS Appl Mater Interfaces 8:102–108.  https://doi.org/10.1021/acsami.5b08975CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and-B with a single immunochromatographic test strip. J Immunol Methods 380:23–29PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cho M et al (2010) Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc Natl Acad Sci U S A 107:15373–15378.  https://doi.org/10.1073/pnas.1009331107CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cho M et al (2013) Quantitative selection and parallel characterization of aptamers. Proc Natl Acad Sci 110:18460–18465PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cibiel A, Dupont DM, Ducongé F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235.  https://doi.org/10.3390/ph4091216CrossRefPubMedCentralGoogle Scholar
  25. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183:1909–1916CrossRefGoogle Scholar
  26. Deng R, Wang L, Yi G, Hua E, Xie G (2014) Target-induced aptamer release strategy based on electrochemical detection of staphylococcal enterotoxin B using GNPs-ZrO2-Chits film. Colloids Surf B: Biointerfaces 120:1–7.  https://doi.org/10.1016/j.colsurfb.2014.04.028CrossRefPubMedPubMedCentralGoogle Scholar
  27. Derbyshire N et al (2012) Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 84:6595–6602PubMedPubMedCentralCrossRefGoogle Scholar
  28. Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A (2016) Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes. Anal Biochem 512:47–57.  https://doi.org/10.1016/j.ab.2016.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dua P, Kim S, Lee DK (2011) Nucleic acid aptamers targeting cell-surface proteins. Methods 54:215–225.  https://doi.org/10.1016/j.ymeth.2011.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  30. Eissa S, Siaj M, Zourob M (2015) Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron 69:148–154.  https://doi.org/10.1016/j.bios.2015.01.055CrossRefPubMedPubMedCentralGoogle Scholar
  31. Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2016) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fang Z, Wu W, Lu X, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fei A et al (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129.  https://doi.org/10.1016/j.bios.2015.03.028CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ferreira C, Matthews C, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27:289–301CrossRefGoogle Scholar
  35. Ferreira CSM, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S (2008) DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 390:1039–1050PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fetter L, Richards J, Daniel J, Roon L, Rowland TJ, Bonham AJ (2015) Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins. Chem Commun 51:15137–15140CrossRefGoogle Scholar
  37. Golden MC, Collins BD, Willis MC, Koch TH (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178.  https://doi.org/10.1016/S0168-1656(00)00290-XCrossRefPubMedPubMedCentralGoogle Scholar
  38. Gopinath SC (2007) Methods developed for SELEX. Anal Bioanal Chem 387:171–182.  https://doi.org/10.1007/s00216-006-0826-2CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2011) Point of care diagnostics: status and future. Anal Chem 84:487–515PubMedCrossRefGoogle Scholar
  40. Guthrie JW, Hamula CLA, Zhang H, Le XC (2006) Assays for cytokines using aptamers. Methods 38:324–330.  https://doi.org/10.1016/j.ymeth.2006.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hianik T, Wang J (2009) Electrochemical aptasensors – recent achievements and perspectives. Electroanalysis 21:1223–1235CrossRefGoogle Scholar
  42. Hidding, J. A therapeutic battle: Antibodies vs. Aptamers. Nanoscience master program, 1–20Google Scholar
  43. Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@ SiO2 and Au nanoparticles. Biosens Bioelectron 80:398–404PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jarczewska M, Kierzkowska E, Ziółkowski R, Górski Ł, Malinowska E (2015) Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 101:35–41.  https://doi.org/10.1016/j.bioelechem.2014.06.013CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jeong S, Rhee Paeng I (2012) Sensitivity and selectivity on aptamer-based assay: the determination of tetracycline residue in bovine milk. ScientificWorldJournal 2012:159456.  https://doi.org/10.1100/2012/159456CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jiang Y, Zhao H, Zhu N, Lin Y, Yu P, Mao L (2008) A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem 120:8729–8732CrossRefGoogle Scholar
  48. Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–6411.  https://doi.org/10.1039/c5an01084eCrossRefPubMedPubMedCentralGoogle Scholar
  49. Juncker D, Bergeron S, Laforte V, Li H (2014) Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing. Curr Opin Chem Biol 18:29–37PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kaur H, Bruno JG, Kumar A, Sharma TK (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032.  https://doi.org/10.7150/thno.25958CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra B (2008) Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683PubMedCrossRefGoogle Scholar
  52. Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649PubMedCrossRefGoogle Scholar
  53. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 125:9014–9015.  https://doi.org/10.1021/ja035756nCrossRefPubMedGoogle Scholar
  54. Kinn Rød AM, Harkestad N, Jellestad FK, Murison R (2017) Comparison of commercial ELISA assays for quantification of corticosterone in serum. Sci Rep 7:6748.  https://doi.org/10.1038/s41598-017-06006-4CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kumar P, Lambadi PR, Navani NK (2015) Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 72:340–347.  https://doi.org/10.1016/j.bios.2015.05.029CrossRefPubMedGoogle Scholar
  56. Kumar S, Kumar S, Pandey CM, Malhotra BD (2016a) Conducting paper based sensor for cancer biomarker detection. J Phys Conf Ser 1:012010CrossRefGoogle Scholar
  57. Kumar S, Sharma JG, Maji S, Malhotra BD (2016b) A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv 6:77037–77046CrossRefGoogle Scholar
  58. Labib M, Hedström M, Amin M, Mattiasson B (2009) A capacitive biosensor for detection of staphylococcal enterotoxin B. Anal Bioanal Chem 393:1539–1544PubMedCrossRefGoogle Scholar
  59. Link N, Weber W, Fussenegger M (2007) A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples. J Biotechnol 128:668–680PubMedCrossRefGoogle Scholar
  60. Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81:10013–10018PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136.  https://doi.org/10.1021/ac101409tCrossRefPubMedPubMedCentralGoogle Scholar
  62. Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014a) Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu J, Morris MD, Macazo FC, Schoukroun-Barnes LR, White RJ (2014b) The current and future role of aptamers in electroanalysis. J Electrochem Soc 161:H301–H313CrossRefGoogle Scholar
  64. Liu Y, Yu J, Wang Y, Liu Z, Lu Z (2016) An ultrasensitive aptasensor for detection of ochratoxin A based on shielding effect-induced inhibition of fluorescence resonance energy transfer. Sensors Actuators B Chem 222:797–803CrossRefGoogle Scholar
  65. Lou X et al (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci 106:2989–2994PubMedCrossRefGoogle Scholar
  66. Luan Y, Chen J, Li C, Xie G, Fu H, Ma Z, Lu A (2015) Highly sensitive colorimetric detection of ochratoxin A by a label-free aptamer and gold nanoparticles. Toxins 7:5377–5385PubMedPubMedCentralCrossRefGoogle Scholar
  67. Luo C et al (2012) A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111. Electroanalysis 24:1186–1191.  https://doi.org/10.1002/elan.201100700CrossRefGoogle Scholar
  68. Luo Y, Xu J, Li Y, Gao H, Guo J, Shen F, Sun C (2015) A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54:7–15CrossRefGoogle Scholar
  69. Mann AP et al (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2:298PubMedCrossRefGoogle Scholar
  70. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty J-L, Korri-Youssoufi H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 920:37–46.  https://doi.org/10.1016/j.aca.2016.03.038CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mishra RK, Hayat A, Catanante G, Istamboulie G, Marty J-L (2016) Sensitive quantitation of ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem 192:799–804PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mohammad Danesh N, Ramezani M, Sarreshtehdar Emrani A, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 75:123–128.  https://doi.org/10.1016/j.bios.2015.08.017CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mohammadpour AH, Tavassoli A, Khakzad MR, Zibaee E, Afshar M, Hashemzaei M, Karimi G (2015) Effect of gold nanoparticles on postoperative peritoneal adhesions in rats. Nanomed J 2:211–216.  https://doi.org/10.7508/nmj.2015.03.006CrossRefGoogle Scholar
  74. Mutreja R, Jariyal M, Pathania P, Sharma A, Sahoo DK, Suri CR (2016) Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosens Bioelectron 85:707–713.  https://doi.org/10.1016/j.bios.2016.05.079CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239.  https://doi.org/10.1038/nature06385CrossRefPubMedPubMedCentralGoogle Scholar
  76. Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281.  https://doi.org/10.1016/j.cbpa.2006.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  77. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284.  https://doi.org/10.1038/nrc2622CrossRefPubMedGoogle Scholar
  78. Niu S, Lv Z, Liu J, Bai W, Yang S, Chen A (2014) Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS One 9:e109263PubMedPubMedCentralCrossRefGoogle Scholar
  79. Obubuafo A, Balamurugan S, Shadpour H, Spivak D, McCarley RL, Soper SA (2008) Poly(methyl methacrylate) microchip affinity capillary gel electrophoresis of aptamer-protein complexes for the analysis of thrombin in plasma. Electrophoresis 29:3436–3445.  https://doi.org/10.1002/elps.200700854CrossRefPubMedGoogle Scholar
  80. Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4:51–51.  https://doi.org/10.1186/s13568-014-0051-xCrossRefPubMedPubMedCentralGoogle Scholar
  81. Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532PubMedCrossRefPubMedCentralGoogle Scholar
  82. Parashar A (2016) Aptamers in therapeutics. J Clin Diagn Res 10:BE01–BE06.  https://doi.org/10.7860/JCDR/2016/18712.7922CrossRefPubMedPubMedCentralGoogle Scholar
  83. Park JH, Jee MH, Kwon OS, Keum SJ, Jang SK (2013) Infectivity of hepatitis C virus correlates with the amount of envelope protein E2: development of a new aptamer-based assay system suitable for measuring the infectious titer of HCV. Virology 439:13–22.  https://doi.org/10.1016/j.virol.2013.01.014CrossRefPubMedPubMedCentralGoogle Scholar
  84. Patel MK et al (2015) A label-free photoluminescence genosensor using nanostructured magnesium oxide for cholera detection. Sci Rep 5:17384PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pilehvar S, Dierckx T, Blust R, Breugelmans T, De Wael K (2014) An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol. Sensors (Basel) 14:12059–12069.  https://doi.org/10.3390/s140712059CrossRefGoogle Scholar
  86. Qian J, Lou X, Zhang Y, Xiao Y, Soh HT (2009) Generation of highly specific aptamers via micromagnetic selection. Anal Chem 81:5490–5495PubMedPubMedCentralCrossRefGoogle Scholar
  87. Qin X (2016) A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens Bioelectron 77:752–758.  https://doi.org/10.1016/j.bios.2015.10.050CrossRefPubMedPubMedCentralGoogle Scholar
  88. Radi A-E (2011) Electrochemical aptamer-based biosensors: recent advances and perspectives. Int J Electrochem 2011:863196CrossRefGoogle Scholar
  89. Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2016) A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sensors Actuators B Chem 222:1–7CrossRefGoogle Scholar
  90. Roushani M, Shahdost-fard F (2015) A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform. Anal Chim Acta 853:214–221.  https://doi.org/10.1016/j.aca.2014.09.031CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ruscito A, DeRosa MC (2016) Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front Chem 4:14PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84:6104–6109PubMedCrossRefPubMedCentralGoogle Scholar
  93. Sharma R, Ragavan K, Thakur M, Raghavarao K (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 74:612–627PubMedCrossRefPubMedCentralGoogle Scholar
  94. Shen G, Guo Y, Sun X, Wang X (2014) Electrochemical aptasensor based on prussian blue-chitosan-glutaraldehyde for the sensitive determination of tetracycline. Nano-Micro Lett 6:143–152.  https://doi.org/10.1007/bf03353778CrossRefGoogle Scholar
  95. Shim W-B, Kim MJ, Mun H, Kim M-G (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 62:288–294.  https://doi.org/10.1016/j.bios.2014.06.059CrossRefPubMedPubMedCentralGoogle Scholar
  96. Shorie M, Bhalla V, Pathania P, Suri CR (2014) Nanobioprobe mediated DNA aptamers for explosive detection. Chem Commun 50:1080–1082CrossRefGoogle Scholar
  97. Song K-M et al (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  98. Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel) 12:612–631.  https://doi.org/10.3390/s120100612CrossRefGoogle Scholar
  99. Syed MA, Pervaiz S (2010) Advances in aptamers. Oligonucleotides 20:215–224PubMedCrossRefPubMedCentralGoogle Scholar
  100. Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250.  https://doi.org/10.1016/j.bios.2015.05.065CrossRefPubMedPubMedCentralGoogle Scholar
  101. Toh SY, Citartan M, Gopinath SC, Tang T-H (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403PubMedCrossRefPubMedCentralGoogle Scholar
  102. Varillas JI, Chen K, Zhang J, George TJ Jr, Hugh Fan Z (2017) A novel microfluidic device for isolation of circulating tumor cells from pancreatic cancer blood samples. Methods Mol Biol 1634:33–53.  https://doi.org/10.1007/978-1-4939-7144-2_3CrossRefPubMedPubMedCentralGoogle Scholar
  103. Velasco-Garcia M, Missailidis S (2009) New trends in aptamer-based electrochemical biosensors. Gene Ther Mol Biol 13:1–10Google Scholar
  104. Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Lab Investig 86:610–618PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267CrossRefGoogle Scholar
  106. Wang H-Q, Wu Z, Tang L-J, Yu R-Q, Jiang J-H (2011a) Fluorescence protection assay: a novel homogeneous assay platform toward development of aptamer sensors for protein detection. Nucleic Acids Res 39:e122–e122.  https://doi.org/10.1093/nar/gkr559CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wang L et al (2011b) Fluorescent strip sensor for rapid determination of toxins. Chem Commun 47:1574–1576CrossRefGoogle Scholar
  108. Wang L et al (2011c) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron 26:3059–3062PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wang Y, Li Z, Li H, Vuki M, Xu D, Chen H-Y (2012) A novel aptasensor based on silver nanoparticle enhanced fluorescence. Biosens Bioelectron 32:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang Y-K et al (2013) Development of a rapid and simultaneous immunochromatographic assay for the determination of zearalenone and fumonisin B1 in corn, wheat and feedstuff samples. Food Control 31:180–188CrossRefGoogle Scholar
  111. Wang C et al (2016) Colorimetric aptasensing of ochratoxin A using Au@ Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191CrossRefGoogle Scholar
  112. Wiriyachaiporn S, Howarth PH, Bruce KD, Dailey LA (2013) Evaluation of a rapid lateral flow immunoassay for Staphylococcus aureus detection in respiratory samples. Diagn Microbiol Infect Dis 75:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wu W-H et al (2012) Aptasensors for rapid detection of Escherichia coli O157: H7 and Salmonella typhimurium. Nanoscale Res Lett 7:658PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014a) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wu W et al (2014b) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella typhimurium. ACS Appl Mater Interfaces 6:16974–16981PubMedCrossRefGoogle Scholar
  116. Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66:1949–1954PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xiao R, Wang D, Lin Z, Qiu B, Liu M, Guo L, Chen G (2015) Disassembly of gold nanoparticle dimers for colorimetric detection of ochratoxin A. Anal Methods 7:842–845CrossRefGoogle Scholar
  118. Xu H, Mao X, Zeng Q, Wang S, Kawde A-N, Liu G (2008) Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem 81:669–675CrossRefGoogle Scholar
  119. Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442.  https://doi.org/10.1021/ac9012072CrossRefPubMedPubMedCentralGoogle Scholar
  120. Xu Y, Yang X, Wang E (2010) Review: aptamers in microfluidic chips. Anal Chim Acta 683:12–20.  https://doi.org/10.1016/j.aca.2010.10.007CrossRefPubMedGoogle Scholar
  121. Yadav B, Kumar S, Doval D, Malhotra B (2017) Development of biosensor for non-invasive oral cancer detection. Eur J Cancer 72:S138–S139CrossRefGoogle Scholar
  122. Yan Z, Gan N, Li T, Cao Y, Chen Y (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57.  https://doi.org/10.1016/j.bios.2015.11.019CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yang F et al (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352.  https://doi.org/10.1016/j.bios.2015.09.050CrossRefPubMedGoogle Scholar
  124. Ye BC, Yin BC (2008) Highly sensitive detection of mercury (II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem 120:8514–8517CrossRefGoogle Scholar
  125. Yetisen AK, Akram MS, Lowe CR (2013) based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251PubMedCrossRefPubMedCentralGoogle Scholar
  126. Yuan J et al (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yugender Goud K, Catanante G, Hayat A, M S VGK, Marty JL (2016) Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sensors Actuators B Chem 235:466–473.  https://doi.org/10.1016/j.snb.2016.05.112CrossRefGoogle Scholar
  128. Zhang Z, Wang Z, Wang X, Yang X (2010) Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensors Actuators B Chem 147:428–433CrossRefGoogle Scholar
  129. Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules 23:291CrossRefGoogle Scholar
  130. Zhao Q, Lu X, Yuan C-G, Li X-F, Le XC (2009) Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma−mass spectrometry detection. Anal Chem 81:7484–7489PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors Actuators B Chem 156:95–99CrossRefGoogle Scholar
  132. Zheng W et al (2016) Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosens Bioelectron 80:574–581.  https://doi.org/10.1016/j.bios.2016.01.091CrossRefPubMedGoogle Scholar
  133. Zhu C, Shi Y, Cheng C, Wang L, Fung KK, Wang N (2012) Correlation between the morphology and performance enhancement of ZnO hierarchical flower photoanodes in quasi-solid dye-sensitized solar cells. J Nanomater 2012:8.  https://doi.org/10.1155/2012/212653CrossRefGoogle Scholar
  134. Zuo P, Li X, Dominguez DC, Ye BC (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13:3921–3928.  https://doi.org/10.1039/c3lc50654aCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ruchi Mutreja
    • 1
  • Pardeep Kumar
    • 1
  • Anupama Semwal
    • 1
  • Shubham Jain
    • 1
  • Rajat Dhyani
    • 1
  • Rupesh Agarwal
    • 2
  • Umesh Chand
    • 2
  • Shahnawaz Ahmad Baba
    • 1
  • Naveen K. Navani
    • 1
  • Piyush Kumar
    • 2
    Email author
  1. 1.Chemical Biology Laboratory, Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of BiochemistryCentral University of HaryanaMahendergarhIndia

Personalised recommendations