Advertisement

Aptamers pp 175-186 | Cite as

Aptamer: A Next Generation Tool for Application in Agricultural Industry for Food Safety

  • Gulab Singh Yadav
  • Abhishek Parashar
  • Neeraj K. Aggarwal
Chapter

Abstract

Aptamers are short DNA and RNA or protein sequence and have been extensively researched for their application in different field such as therapeutic agents, as delivery vehicles, as analytical tool, and as recognition molecule for sensor and different assay. To better understand the potential of aptamer in food safety and agriculture sector, an overview of the progress in the generation and application in these sectors is discussed in this review. Special attention is paid to the researches which are relatively close to the application for contaminants detection in food material.

Keywords

Aptamer Food contaminant Microbial contaminants Antibiotics residues Virus contamination Food safety 

References

  1. Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2011) Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin a in wine. Food Control 22(5):737–743CrossRefGoogle Scholar
  2. Beier R, Pahlke C, Quenzel P, Henseleit A, Boschke E, Cuniberti G, Labudde D (2014) FEMS Microbiology Letters banner.  https://doi.org/10.1111/1574-6968.12366PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bell SD, Denu JM, Dixon JE, Ellingtoni AD (1998) RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J Biol Chem 273(23):14309–14314PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bourke ATC, Hawes RB (1983) Freshwater cyanobacteria (blue-green algae) and human health. Med J Aust 1(11):491–492PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bruno JG, Carrillo MP, Phillips T, Vail NK, Hanson D (2009) Competitive FRET-aptamer-based detection of methylphosphonic acid: a common nerve agent metabolite. J Fluoresc 18:867–876.  https://doi.org/10.1007/s10895-008-0316-3PubMedCrossRefGoogle Scholar
  6. Bruno JG, Carrillo MP, Phillips T, Hanson D, Bohmann JA (2010) DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption. J Fluoresc 21:2021–2033.  https://doi.org/10.1007/s10895-011-0903-6PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bruno JG, Richarte AM, Carrillo MP, Edge A (2012) An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron 31(1):240–243PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37(14):4621–4628PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cao F, Lu X, Hu X, Zhang Y, Zeng L, Chen L, Sun M (2016) In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci Biotechnol Biochem 80(5):823–832PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chang GJ, Kuno G, Purdy DE, Davis BS (2004) Recent advancement in flavivirus vaccine development. Expet Rev Vaccine 3:199–220.  https://doi.org/10.1586/14760584.3.2.199PubMedCrossRefGoogle Scholar
  11. Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 15(71):230–242PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 357:743–748PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen Z, Li L, Mu X, Zhao H, Guo L (2012) Electrochemical aptasensor for detection of copper based on a reagentless signal-on architecture and amplification by gold nanoparticles. Talanta 85:730–735PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen X, Huang Y, Duan N et al (2013) Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem 405(20):6573–6581PubMedCrossRefGoogle Scholar
  15. Chen X, Huang Y, Duan N et al (2014) Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. J Agric Food Chem 62(42):10368–10374PubMedCrossRefGoogle Scholar
  16. Chu S (1991) Laser manipulation of atoms and particles. Science 253(5022):861–866PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cruz-Aguado JA, Penner G (2008a) Determination of ochratoxin a with a DNA aptamer. J Agric Food Chem 56(22):10456–10461PubMedCrossRefGoogle Scholar
  18. Cruz-Aguado JA, Penner G (2008b) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855PubMedCrossRefPubMedCentralGoogle Scholar
  19. Danesh NM, Ramezani M, Sarreshtehdar EA, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 15(75):123–128Google Scholar
  20. Dapra J, Lauridsen LH, Nielsen AT, Rozlosnik N (2013) Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor. Biosens Bioelectron 43:315–320PubMedCrossRefPubMedCentralGoogle Scholar
  21. Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A (2016) Aptamers against pathogenic microorganisms. Crit Rev Microbiol 42(6):847–865PubMedPubMedCentralCrossRefGoogle Scholar
  22. Deeds JR, Landsberg JH, Etheridge SM, Pitcher GC, Longan SW (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6(2):308–348PubMedPubMedCentralCrossRefGoogle Scholar
  23. DeGrasse JA (2012) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410PubMedPubMedCentralCrossRefGoogle Scholar
  24. DeRosa MR, Monreal C, Schnitzer M, W alsh R, Sultan Y. (2010) Nanotechnology in fertilizers. Nat Nanotechnol J 5:91PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dhaked RK, Singh MK, Singh P, Gupta P (2010) Botulinum toxin: bioweapon & magic drug. Indian J Med Res 132(11):489–503PubMedPubMedCentralGoogle Scholar
  26. Dreisig K, Taxvig C, Birkhøj Kjærstad M, Nellemann C, Hass U, Vinggaard AM (2013) Predictive value of cell assays for developmental toxicity and embryotoxicity. ALTEX:319–330Google Scholar
  27. Duan N, Wu SJ, Chen XJ, Huang YK, Wang ZP (2012) J Agric Food Chem 60:4034–4038Google Scholar
  28. Duan N, Ding XY, He LX, Wu SJ, Wei YX, Wang ZP (2013a) Food Control 33:239–243CrossRefGoogle Scholar
  29. Duan N, Wu SJ, Chen XJ, Huang YK, Xia Y, Ma XY, Wang ZP (2013b) J Agric Food Chem 61:3229–3234Google Scholar
  30. Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686PubMedCrossRefPubMedCentralGoogle Scholar
  31. Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against okadaic acid for biosensing application. Anal Chem 85(24):11794–11801PubMedCrossRefPubMedCentralGoogle Scholar
  32. Elshafey R, Siaj M, Zourob M (2014) In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Anal Chem 86(18):9196–9203PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedPubMedCentralCrossRefGoogle Scholar
  34. Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A (2014) Selection, Characterization and Application of Nucleic Acid Aptamers for the Capture and Detection of Human Norovirus Strains. PLoS One.  https://doi.org/10.1371/journal.pone.0106805PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fang Z, Wu W, X Lu, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197PubMedCrossRefPubMedCentralGoogle Scholar
  36. Giamberardino A, Labib M, Hassan EM, Tetro J, Springthorpe S et al (2013) Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087PubMedPubMedCentralCrossRefGoogle Scholar
  37. González-Fernández E, De-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles. Electroanalysis 23:43–49.  https://doi.org/10.1002/elan.20100056
  38. Gua W, Sun N, Qin X, Pei M, Wang L (2015) A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF6 and nanoporous PtTi alloy. Biosens Bioelectron 74:691–697Google Scholar
  39. Handy SM, Yakes BJ, DeGrasse JA et al (2013) First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 61(1):30–37PubMedCrossRefPubMedCentralGoogle Scholar
  40. He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586.  https://doi.org/10.1021/jf104189gPubMedCrossRefPubMedCentralGoogle Scholar
  41. Hu XG, Tulsieram KL, Zhou QX, Mu L, Wen JP (2012) Polymeric nanoparticle-aptamer bioconjugates can diminish the toxicity of mercury in vivo. Toxicol Lett 208(1):69–74PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwaraknath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thruingiensis spores. J Fluoresc 17(2):193–199PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jahanbani S, Benvidi A (2016) Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron 15(85):553–562PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jones RM, Nicas M, Hubbard A, Sylvester MD, Reingold A (2005) The infectious dose of Francisella Tularensis (Tularemia). Appl Biosafety.  https://doi.org/10.1177/153567600501000405CrossRefGoogle Scholar
  45. Joshi R, Janagama H, Dwivedi HP et al (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jyoti A, Vajpayee P, Singh G et al (2011) Identification of environmental reservoirs of nontyphoidal salmonellosis: aptamer-assisted bioconcentration and subsequent detection of Salmonella typhimurium by quantitative polymerase chain reaction. Environ Sci Technol 45:8996–9002CrossRefGoogle Scholar
  47. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550PubMedCrossRefGoogle Scholar
  48. Kim M, Um HJ, Bang S, Lee SH, Oh SJ, Han JH, Kim KW, Min J, Kim YH (2009) Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environ Sci Technol 43(24):9335–9340CrossRefGoogle Scholar
  49. Kolovskaya OS, Zamay TN, Zamay AS, Glazyrin YE, Spivak EA, Zubkova OA, Kadkina AV, Erkaev EN, Zamay GS, Savitskaya AG, Trufanova LV, Petrova LL, Berezovski MV (2014) DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. Biochem Moscow Suppl Ser A 8:60CrossRefGoogle Scholar
  50. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012a) Aptamer-based impedimetric sensor for bacterial typing. Anal Chem 84:8114–8117PubMedCrossRefGoogle Scholar
  51. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA (2012b) Aptamer-based viability impedimetric sensor for bacteria. Anal Chem 84(21):8966–8969PubMedCrossRefGoogle Scholar
  52. Lee HJ, Kim BC, Kim KW et al (2009) A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens Bioelectron 24:3550–3555PubMedCrossRefGoogle Scholar
  53. Li L, Li B, Qi Y, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393(8):2051–2057PubMedCrossRefPubMedCentralGoogle Scholar
  54. Liu X, Zhang X (2015) Aptamer-based technology for food analysis. Appl Biochem Biotechnol 175(1):603–624PubMedCrossRefGoogle Scholar
  55. Lou X, Qian J, Xiao Y, Viel L, Gerdonb AE, Lagallya ET, Atzbergerc P, Tarasowd TM, Heegera AJ, Soha HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci U S A 106(9):2989–2994PubMedPubMedCentralCrossRefGoogle Scholar
  56. Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–7804PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ma X, Wang W, Chen X et al (2014) Selection, identification, and application of aflatoxin B1 aptamer. Eur Food Res Technol 238(6):919–925CrossRefGoogle Scholar
  58. Malhotra S, Pandey AK, Rajput YS, Sharma R (2014) Selection of aptamers for aflatoxin M1 and their characterization. J Mol Recognit 27(8):493–500PubMedCrossRefPubMedCentralGoogle Scholar
  59. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC (2012) Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6):1307–1315PubMedCrossRefGoogle Scholar
  60. Marton S, Cleto F, Krieger MA, Cardoso J (2016) Isolation of an Aptamer that binds specifically to E. coli. PLoS One 11(4):e0153637PubMedPubMedCentralCrossRefGoogle Scholar
  61. McKeague M, Bradley CR, de Girolamo A, Visconti A, David Miller J, de Rosa MC (2010) Screening and initial binding assessment of fumonisin B1 aptamers. Int J Mol Sci 11(12):4864–4881PubMedPubMedCentralCrossRefGoogle Scholar
  62. McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa M (2014) Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin a. Toxins 6(8):2435–2452PubMedPubMedCentralCrossRefGoogle Scholar
  63. Morton SL, Tindall DR (1996) Determination of okadaic acid content of dinoflagellate cells: a comparison of the HPLC-fluorescent method and two monoclonal antibody ELISA test kits. Toxicon 34(8):947–954PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nakamura C, Kobayashi T, Miyake M, Shirai M, Miyake J (2001) Usage of a DNA aptamer as a ligand targeting microcystin. Mol Cryst Liq Cryst Sci Technol Sect A 371(1):369–374CrossRefGoogle Scholar
  65. Nikolaus N, Strehlitz B (2014) DNA-Aptamers binding aminoglycoside antibiotics. Sensors (Basel) 14:3737–3755.  https://doi.org/10.3390/s140203737PubMedCrossRefPubMedCentralGoogle Scholar
  66. Nugen SR, Baeumner AJ (2008) Trends and opportunities in food pathogen detection. Anal Bioanal Chem 391(2):451–454PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pan Q, Zhang XL, Wu HY et al (2005) Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar Typhi. Antimicrob Agents Chemother 49:4052–4060PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pang S, Labuza TP, He L (2014) Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139(8):1895–1901PubMedCrossRefPubMedCentralGoogle Scholar
  69. Peng Z, Ling M, Ning Y, Deng L (2014) Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc 24:1159–1168PubMedCrossRefPubMedCentralGoogle Scholar
  70. Petzinger E, Ziegler K (2000) Ochratoxin a from a toxicological perspective. J Vet Pharmacol Ther 23(2):91–98PubMedCrossRefPubMedCentralGoogle Scholar
  71. Qin L, Zheng R, Ma Z et al (2009) The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis. Clin Chem Lab Med 47:405–411Google Scholar
  72. Rotherham LS, Maserumule C, Dheda K et al (2012) Selection and application of ssDNA aptamers to detect active TB from sputum samples. PLoS One 7:e46862PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sharma R, Barui AK, Rajput YS (2015) Aptamer specific for cefquinome. Indian patent 1775/DEL/2015Google Scholar
  74. Shipley SLS, White E, Kim SK (2010) Selection of aptamers against live E. Coli cells using cell SELEX. FASEB J 24(1): Supplement. 907.14Google Scholar
  75. Singh G, Vajpayee P, Rani N et al (2012) Bio-capture of S. Typhimurium from surface water by aptamer for culture-free quantification. Ecotoxicol Environ Saf 78:320–326PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sinha J, Reyes SJ, Gallivan JP (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol 6(6):464–470PubMedPubMedCentralCrossRefGoogle Scholar
  77. So HM, Park DW, Jeon EK et al (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4:197–201CrossRefGoogle Scholar
  78. Stead SL, Ashwin H, Johnston B et al (2010) An RNA-aptamer-based assay for the detection and analysis of malachite green and leucomalachite green residues in fish tissue. Anal Chem 82(7):2652–2660PubMedCrossRefGoogle Scholar
  79. Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42(15):2389–2402Google Scholar
  80. Tombelli S, Minunni M, Luzi E, Mascini M (2007) Aptamer-based biosensors for the detection of HIV-1 tat protein. Bioelectrochemistry 67:135–141PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-linked immobilized sorbent assay. Lab Investig 86:610–618PubMedCrossRefPubMedCentralGoogle Scholar
  83. Vivekananda J, Salgado C, Millenbaugh NJ (2014) DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem Biophys Res Commun 444:433–438PubMedCrossRefPubMedCentralGoogle Scholar
  84. Wang KY, Zeng YL, Yang XY et al (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278CrossRefGoogle Scholar
  85. Wang R, Zhao J, Jiang T et al (2013) Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 189:362–369PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wang S, Liu J, Yong W, Chen Q, Zhang L, Dong Y et al (2015) A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta 131:562–569PubMedCrossRefPubMedCentralGoogle Scholar
  87. Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R (2016) Selection and characterization of DNA aptamers for the development of light-up biosensor to detect cd(II). Talanta 154:498–503PubMedCrossRefPubMedCentralGoogle Scholar
  88. Yamamoto C, Sen T (2008) Nucleic acids ligands capable of binding to internalin B or internalin A. Internation Application Published under the patent cooperation treaty, WO2008/011608A2Google Scholar
  89. Yamamoto C, Sen T (2009) Nucleic acids ligands capable of binding to internalin B or internalin A. US Patent Application Publication, (October, 2009) US20090264512A1Google Scholar
  90. Yamamoto C, Sen T (2010) Aptamers that bind to Listeria surface proteins. US Patent Application Publication, (January, 2010) US7645582B2Google Scholar
  91. Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, Wang K (2014) Ultrasensitive electrochemical apta-sensor of ochratoxin a based on two level cascades signal amplification strategy. Bioelectrochemistry 96:7–13CrossRefGoogle Scholar
  92. Yan Z, Gan N, Wang D, Cao Y, Chen M, Li T et al (2016) A “signal-on” aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens Bioelectron 74:718–724PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 48:7334–7337Google Scholar
  94. Zelada-Guillen GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82(22):9254–9260Google Scholar
  95. Zheng X, Hu B, Gao SX, Liu DJ, Sun MJ, Wang LH et al (2013) A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon 101:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zhou J, Neff CP, Swiderski P et al (2012) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 21:192–200PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gulab Singh Yadav
    • 1
  • Abhishek Parashar
    • 2
  • Neeraj K. Aggarwal
    • 3
  1. 1.Department of BiotechnologyCentral University of HaryanaMahendergarhIndia
  2. 2.Animal Biotechnology CentreICAR-National Dairy Research InstituteKarnalIndia
  3. 3.Department of MicrobiologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations