Advertisement

Oxidative Stress: A Boon or Bane for Trypanosomatids Diseases?

  • Dandugudumula Ramu
  • Shailja SinghEmail author
Chapter

Abstract

Infectious diseases are menace to the mankind, having a major contribution to the human morbidity and mortality. Trypanosomatids have a pervasive effect in the world, causing devastating but neglected diseases such as leishmaniasis, Chagas disease, and African sleeping sickness affecting 27 million people worldwide with 150,000 deaths annually. Trypanosomatids developing drug resistance is the current bottleneck in providing promising chemotherapeutics for these diseases which forces the continuous quest for new drugs and drug candidates. Balancing redox homeostasis is crucial for cell survival which has various implications in the biology of these parasites. Reactive oxygen species (ROS) act as signaling molecules, involving in various pathways and crucial for survival. Conversely, various chemotherapeutic drugs against trypanosomatids-caused ROS induction result in oxidative stress, eventually leading to apoptotic manifestations. Oxidative stress is one of the host defense mechanisms to control the infection, while detoxification is one of the crucial counteracts at the parasite front for successful host-parasite interaction. Therefore, oxidative stress is a good tool for better understanding of parasite biology, pathogenesis, and host-pathogen interactions. It is noteworthy that trypanosomatids have divergence from all other prokaryotes and eukaryotes at their redox system, majorly trypanothione-trypanothione reductase (TR)-based redox metabolism. The absence of this system in mammalians and structural/functional differences from host enzymes make it a lucrative target for studying its role in oxidative stress control and also to develop effective chemotherapeutics. One of the causes for drug resistance of trypanosomatids is due to their action of inducing oxidative stress which in turn activates repair mechanisms resulting in the development of drug resistance. Hence, studying oxidative stress mechanism of trypanosomatids gives insights into drug resistance, which is an impendence in attaining efficacious chemotherapy. In this chapter, we have tried to give an outline of the significance of redox stress and its role in different cellular metabolisms of trypanosomatids, with a special focus on trypanothione-trypanothione reductase (TR)-based redox system as a peculiar system to study trypanosomatids oxidative stress mechanism, also for drug designing.

Keywords

Trypanosomatids Oxidative stress Trypanothione-trypanothione reductase Reactive oxygen species (ROS) Drug resistance Host-pathogen interaction 

References

  1. 1.
    McCall L-I, McKerrow JH (2014) Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol 30(7):342–349CrossRefGoogle Scholar
  2. 2.
    WHO (2015) Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases. World Health Organisation, GenevaGoogle Scholar
  3. 3.
    Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M et al (2017) Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 15(4):217CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, Dias Filho BP, Nakamura CV, & Silva SO (2013) Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Radic Biol Med 60, 17–28Google Scholar
  5. 5.
    Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1863(5):1038–1048CrossRefGoogle Scholar
  6. 6.
    McConville MJ, Naderer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 6:543–561CrossRefGoogle Scholar
  7. 7.
    Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5(6):485–497CrossRefGoogle Scholar
  8. 8.
    Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pohanka M (2013) Role of oxidative stress in infectious diseases. A review. Folia Microbiol 58(6):503–513CrossRefGoogle Scholar
  10. 10.
    Almeida BFM, Narciso LG, Melo LM, Preve PP, Bosco AM, de Lima VMF, Ciarlini PC (2013) Leishmaniasis causes oxidative stress and alteration of oxidative metabolism and viability of neutrophils in dogs. Vet J 198(3):599–605CrossRefGoogle Scholar
  11. 11.
    Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica et Biophysica Acta (BBA)-Gen Subj 1780(11):1236–1248CrossRefGoogle Scholar
  12. 12.
    Comini MA, Flohé L (2013) Trypanothione-based redox metabolism of Trypanosomatids. Trypanosomatid Dis Mol Routes Drug Discov:167–199Google Scholar
  13. 13.
    Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R (2008) Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 45(6):733–742CrossRefGoogle Scholar
  14. 14.
    Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica et Biophysica Acta (BBA)-Gen Subj 1780(11):1236–1248CrossRefGoogle Scholar
  15. 15.
    Sarwar HS, Akhtar S, Sohail MF, Naveed Z, Rafay M, Nadhman A, Yasinzai M, Shahnaz G (2017) Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine 12(14):1713–1725CrossRefGoogle Scholar
  16. 16.
    da Silva MS, Segatto M, Pavani RS, Gutierrez-Rodrigues F, Bispo V d S, de Medeiros MHG, Calado RT, Elias MC, Cano MIN (2017) Consequences of acute oxidative stress in Leishmania amazonensis: from telomere shortening to the selection of the fittest parasites. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1864(1):138–150CrossRefGoogle Scholar
  17. 17.
    Turrens JF (2004) Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Asp Med 25(1–2):211–220CrossRefGoogle Scholar
  18. 18.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605CrossRefGoogle Scholar
  19. 19.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(2):335–344CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Turrens JF (1989) The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes. Biochem J 259(2):363–368CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Denicola-Seoane A, Rubbo H, Prodanov E, Turrens JF (1992) Succinate-dependent metabolism in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 54(1):43–50CrossRefGoogle Scholar
  22. 22.
    Santhamma KR, Bhaduri A (1995) Characterization of the respiratory chain of Leishmania donovani promastigotes. Mol Biochem Parasitol 75(1):43–53CrossRefGoogle Scholar
  23. 23.
    Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Ann Rev Microbiol 46(1):695–729CrossRefGoogle Scholar
  24. 24.
    Boveris A, Hertig CM, Turrens JF (1986) Fumarate reductase and other mitochondrial activities in Trypanosoma cruzi. Mol Biochem Parasitol 19(2):163–169CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitology 102(1):17–26CrossRefGoogle Scholar
  26. 26.
    Turrens JF (1987) Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei. Mol Biochem Parasitol 25(1):55–60CrossRefGoogle Scholar
  27. 27.
    Fang J, Beattie DS (2002) Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. Mol Biochem Parasitol 123(2):135–142CrossRefGoogle Scholar
  28. 28.
    Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science 227(4693):1485–1487CrossRefGoogle Scholar
  29. 29.
    Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, Ouellette M (1997) Co-amplification of the γ-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 16(11):3057–3065CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ariyanayagam MR, Fairlamb AH (2002) Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata. Biochem J 364(3):679–686CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Oza SL, Tetaud E, Ariyanayagam MR, Warnon SS, Fairlamb AH (2002) A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem 277(39):35853–35861CrossRefGoogle Scholar
  32. 32.
    Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J (2007) Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc Natl Acad Sci 104(49):19250–19255CrossRefGoogle Scholar
  33. 33.
    Onn I, Milman-Shtepel N, Shlomai J (2004) Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. Eukaryot Cell 3(2):277–287CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Légaré D, Papadopoulou B, Roy G, Mukhopadhyay R, Haimeur A, Dey S, Grondin K, Brochu C, Rosen BP, Ouellette M (1997) Efflux systems and increased Trypanothione levels in Arsenite-resistant Leishmania. Exp Parasitol 87(3):275–282CrossRefGoogle Scholar
  35. 35.
    Krauth-Siegel RL, Meiering SK, Schmidt H (2003) The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem 384(4):539–549CrossRefGoogle Scholar
  36. 36.
    Halliwell B (2001) Vitamin C and genomic stability. Mutat Res/Fundament Mol Mech Mutagen 475(1):29–35CrossRefGoogle Scholar
  37. 37.
    Clark D, Albrecht M, Arévalo J (1994) Ascorbate variations and dehydroascorbate reductase activity in Trypanosoma cruzi epimastigotes and trypomastigotes. Mol Biochem Parasitol 66(1):143–145CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ouellette M, Hettema E, Wüst D, Fase-Fowler F, Borst P (1991) Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J 10(4):1009–1016CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP (1996) Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci 93(19):10383–10387CrossRefGoogle Scholar
  40. 40.
    Atwood JA, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309(5733):473–476CrossRefGoogle Scholar
  41. 41.
    Piacenza L, Peluffo G, Alvarez MN, Kelly JM, Wilkinson SR, Radi R (2008) Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage-and endogenously-derived peroxynitrite. Biochem J 410(2):359–368CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Singh BK, Sarkar N, Jagannadham MV, Dubey VK (2008) Modeled structure of trypanothione reductase of Leishmania infantum. BMB Rep 41(6):444–447CrossRefGoogle Scholar
  43. 43.
    Comini MA, Guerrero SA, Haile S, Menge U, Lünsdorf H, Flohé L (2004) Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic Biol Med 36(10):1289–1302CrossRefGoogle Scholar
  44. 44.
    Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science 227(4693):1485–1487CrossRefGoogle Scholar
  45. 45.
    Williams CH Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—a family of flavoenzyme transhydrogenases. Chem Biochem Flavoenzym 3:121–211Google Scholar
  46. 46.
    Singh BK, Sarkar N, Jagannadham MV, Dubey VK (2008) Modeled structure of trypanothione reductase of Leishmania infantum. BMB Rep 41(6):444–447CrossRefGoogle Scholar
  47. 47.
    Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. In: EJB reviews. Springer, Berlin/Heidelberg, pp 29–45Google Scholar
  48. 48.
    Schmidt A, Krauth-Siegel R (2002) Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Topic Med Chem 2(11):1239–1259. Schneider, Erasmus, Yaw-Huei Hsiang, and LeroyCrossRefGoogle Scholar
  49. 49.
    Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5(6):485–497CrossRefGoogle Scholar
  50. 50.
    Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH (1998) Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci 95(9):5311–5316CrossRefGoogle Scholar
  51. 51.
    Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19(11):488–494CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
  2. 2.Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations