Skip to main content

Role of ROS in T. cruzi Intracellular Development

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Chagas disease, caused by the protozoan Trypanosoma cruzi, presents a variable clinical course ranging from asymptomatic cases to more severe forms with cardiac, digestive, or cardio-digestive impairment. The factors involved in this clinical heterogeneity are not completely understood, but certainly both host and parasite genetic variability are important in this process. In the vertebrate host, the establishment of the infection depends on parasite host cell invasion and intracellular multiplication, as well as the host immune response to parasite colonization. T. cruzi is able to invade different cell types, but macrophages as a first defense cell and muscle cells (specially cardiomyocytes) are considered key during the establishment of infection in the host. Many factors regulate parasite invasion and intracellular development. Reactive oxygen species (ROS) have been shown to be important during parasite host cell infection. Although in many cases ROS is seen as detrimental to parasite development, recent evidences from the literature have shown that ROS may actually have a dual role during infection. While in some circumstances it could work in parasite control, in other scenarios, it may act to potentiate parasite intracellular multiplication. Here, we present a brief background of the disease and parasite genetic structure in order to discuss this dual role of ROS during parasite host cell colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araujo CA, Waniek PJ, Jansen AM (2009) An overview of Chagas disease and the role of triatomines on its distribution in Brazil. Vector Borne Zoonotic Dis 9(3):227–234

    Article  PubMed  Google Scholar 

  2. WHO, W.H.O (2018) Chagas disease (American trypanosomiasis) [cited 2018 25th July]

    Google Scholar 

  3. Coura JR, Dias JC (2009) Epidemiology, control and surveillance of Chagas disease – 100 years after its discovery. Mem Inst Oswaldo Cruz 104(4):31–40

    Article  PubMed  Google Scholar 

  4. WHO, W.H.O (2017) Chagas disease (American trypanosomiasis)

    Google Scholar 

  5. Barbosa-Ferreira JM et al (2010) Stroke in a chronic autochthonous chagasic patient from the Brazilian Amazon. Rev Soc Bras Med Trop 43:751–753

    Article  PubMed  Google Scholar 

  6. Alarcon de Noya B et al (2010) Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis 201(9):1308–1315

    Article  PubMed  Google Scholar 

  7. Andrade SG et al (2011) Biological, biochemical and molecular features of Trypanosoma cruzi strains isolated from patients infected through oral transmission during a 2005 outbreak in the state of Santa Catarina, Brazil: its correspondence with the new T. cruzi Taxonomy Consensus (2009). Mem Inst Oswaldo Cruz 106(8):948–956

    Article  CAS  PubMed  Google Scholar 

  8. Souza-Lima Rde C et al (2013) Outbreak of acute Chagas disease associated with oral transmission in the Rio Negro region, Brazilian Amazon. Rev Soc Bras Med Trop 46(4):510–514

    Article  PubMed  Google Scholar 

  9. Florian Sanz F et al (2005) Chagasic cardiomyopathy in Spain: a diagnosis to bear in mind. An Med Interna 22(11):538–540

    CAS  PubMed  Google Scholar 

  10. Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102(Suppl 1):75–85

    Article  PubMed  Google Scholar 

  11. Lescure FX et al (2008) Chagas disease, France. Emerg Infect Dis 14(4):644–646

    Article  PubMed  PubMed Central  Google Scholar 

  12. Munoz J et al (2009) Clinical profile of Trypanosoma cruzi infection in a non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta Trop 111(1):51–55

    Article  PubMed  Google Scholar 

  13. Jackson Y et al (2010) Prevalence, clinical staging and risk for blood-borne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland. PLoS Negl Trop Dis 4(2):e592

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dias JC et al (2016) Brazilian consensus on Chagas disease, 2015. Epidemiol Serv Saude 25(Special):7–86

    PubMed  Google Scholar 

  15. Chagas C (1909) Nova Trypanozomiaze Humana. Memorias do Instituto Oswaldo Cruz 1:11–80

    Article  Google Scholar 

  16. Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31(5–6):472–481

    Article  CAS  PubMed  Google Scholar 

  17. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402

    Article  PubMed  Google Scholar 

  18. Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1(2):92–100

    Article  CAS  PubMed  Google Scholar 

  19. Dutra WO, Gollob KJ (2008) Current concepts in immunoregulation and pathology of human Chagas disease. Curr Opin Infect Dis 21(3):287–292

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zingales B et al (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104(7):1051–1054

    Article  CAS  PubMed  Google Scholar 

  21. Macedo AM, Oliveira RP, Pena SD (2002) Chagas disease: role of parasite genetic variation in pathogenesis. Expert Rev Mol Med 4(5):1–16

    Article  PubMed  Google Scholar 

  22. Vago AR et al (1996) Kinetoplast DNA signatures of Trypanosoma cruzi strains obtained directly from infected tissues. Am J Pathol 149(6):2153–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Franco DJ et al (2003) Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Exp Parasitol 104(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  24. Miles MA et al (2009) The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136(12):1509–1528

    Article  CAS  PubMed  Google Scholar 

  25. Yeo M et al (2005) Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35(2):225–233

    Article  CAS  PubMed  Google Scholar 

  26. Zingales B et al (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12(2):240–253

    Article  PubMed  Google Scholar 

  27. Coura JR et al (2002) Emerging Chagas disease in Amazonian Brazil. Trends Parasitol 18(4):171–176

    Article  PubMed  Google Scholar 

  28. Ramirez JD et al (2013) Molecular epidemiology of human oral Chagas disease outbreaks in Colombia. PLoS Negl Trop Dis 7(2):e2041

    Article  PubMed  PubMed Central  Google Scholar 

  29. Diosque P et al (2003) Multilocus enzyme electrophoresis analysis of Trypanosoma cruzi isolates from a geographically restricted endemic area for Chagas’ disease in Argentina. Int J Parasitol 33(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  30. Campbell DA, Westenberger SJ, Sturm NR (2004) The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med 4(6):549–562

    Article  CAS  PubMed  Google Scholar 

  31. Lages-Silva E et al (2006) Variability of kinetoplast DNA gene signatures of Trypanosoma cruzi II strains from patients with different clinical forms of Chagas’ disease in Brazil. J Clin Microbiol 44(6):2167–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandes MC et al (2011) Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J Exp Med 208(5):909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tardieux I et al (1992) Oral susceptibility of Aedes albopictus to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection. Med Vet Entomol 6(4):311–317

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez A et al (1995) A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 129:1263–1273

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez A et al (1996) Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport. J Cell Biol 134:349–362

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz RC et al (1998) Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. Biochem J 330(Pt 1):505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caler EV et al (1998) Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 17(17):4975–4986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scharfstein J et al (2000) Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 192(9):1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manque PM et al (2003) Cell adhesion and Ca2+ signaling activity in stably transfected Trypanosoma cruzi epimastigotes expressing the metacyclic stage-specific surface molecule gp82. Infect Immun 71(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maeda FY, Cortez C, Yoshida N (2012) Cell signaling during Trypanosoma cruzi invasion. Front Immunol 3:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins NO et al (2015) Molecular characterization of a novel family of Trypanosoma cruzi surface membrane proteins (TcSMP) involved in mammalian host cell invasion. PLoS Negl Trop Dis 9(11):e0004216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neira I, Ferreira AT, Yoshida N (2002) Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. Int J Parasitol 32(4):405–414

    Article  CAS  PubMed  Google Scholar 

  43. Seco-Hidalgo V, De Pablos LM, Osuna A (2015) Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations. Open Biol 5(12):150190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernandes MC, Andrews NW (2012) Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence. FEMS Microbiol Rev 36(3):734–747

    Article  CAS  PubMed  Google Scholar 

  45. Andrews NW (1994) From lysosomes into the cytosol: the intracellular pathway of Trypanosoma cruzi. Braz J Med Biol Res 27(2):471–475

    CAS  PubMed  Google Scholar 

  46. Dvorak JA, Hyde TP (1973) Trypanosoma cruzi: interaction with vertebrate cells in vitro. I. Individual interactions at the cellular and subcellular levels. Exp Parasitol 34:268–283

    Article  CAS  PubMed  Google Scholar 

  47. Andrade LO, Andrews NW (2005) The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3(10):819–823

    Article  CAS  PubMed  Google Scholar 

  48. Vaena de Avalos S et al (2002) Immediate/early response to Trypanosoma cruzi infection involves minimal modulation of host cell transcription. J Biol Chem 277(1):639–644

    Article  CAS  PubMed  Google Scholar 

  49. Costales JA, Daily JP, Burleigh BA (2009) Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genomics 10:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manque PA et al (2011) Trypanosoma cruzi infection induces a global host cell response in cardiomyocytes. Infect Immun 79(5):1855–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caradonna KL et al (2013) Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13(1):108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y et al (2016) Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLoS Pathog 12(4):e1005511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Houston-Ludlam GA, Belew AT, El-Sayed NM (2016) Comparative transcriptome profiling of human foreskin fibroblasts infected with the Sylvio and Y strains of Trypanosoma cruzi. PLoS One 11(8):e0159197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moraes KC, Diniz LF, Bahia MT (2015) Role of cyclooxygenase-2 in Trypanosoma cruzi survival in the early stages of parasite host-cell interaction. Mem Inst Oswaldo Cruz 110(2):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosca MG et al (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61(8):2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardoni RL, Rottenberg ME, Segura EL (1990) Increased production of reactive oxygen species by cells from mice acutely infected with Trypanosoma cruzi. Cell Immunol 128(1):11–21

    Article  CAS  PubMed  Google Scholar 

  57. Wen JJ, Garg N (2004) Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection. Free Radic Biol Med 37(12):2072–2081

    Article  CAS  PubMed  Google Scholar 

  58. Wen JJ, Garg NJ (2008) Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant. J Bioenerg Biomembr 40(6):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dhiman M et al (2008) Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas’ disease. Am J Pathol 173(3):728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta S et al (2009) Trypanosoma cruzi infection disturbs mitochondrial membrane potential and ROS production rate in cardiomyocytes. Free Radic Biol Med 47(10):1414–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guinazu N et al (2010) Induction of NADPH oxidase activity and reactive oxygen species production by a single Trypanosoma cruzi antigen. Int J Parasitol 40(13):1531–1538

    Article  CAS  PubMed  Google Scholar 

  62. Ba X et al (2010) Trypanosoma cruzi induces the reactive oxygen species-PARP-1-RelA pathway for up-regulation of cytokine expression in cardiomyocytes. J Biol Chem 285(15):11596–11606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zacks MA et al (2005) An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An Acad Bras Cienc 77(4):695–715

    Article  CAS  PubMed  Google Scholar 

  64. Dhiman M, Garg NJ (2011) NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 225(4):583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paiva CN, Medei E, Bozza MT (2018) ROS and Trypanosoma cruzi: fuel to infection, poison to the heart. PLoS Pathog 14(4):e1006928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2(10):820–832

    Article  CAS  PubMed  Google Scholar 

  67. Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells : role in defense and signal transduction. Plant Physiol 90(1):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Levine A et al (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593

    Article  CAS  PubMed  Google Scholar 

  69. Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31(2):137–147

    Article  CAS  PubMed  Google Scholar 

  70. Schirmer RH et al (1987) Oxidative stress as a defense mechanism against parasitic infections. Free Radic Res Commun 3(1–5):3–12

    Article  CAS  PubMed  Google Scholar 

  71. Bosch SS et al (2015) Oxidative stress control by apicomplexan parasites. Biomed Res Int 2015:351289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Staerck C et al (2017) Microbial antioxidant defense enzymes. Microb Pathog 110:56–65

    Article  CAS  PubMed  Google Scholar 

  73. Machado FS et al (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 102(24):3003–3008

    Article  CAS  PubMed  Google Scholar 

  74. Piacenza L et al (2007) Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J 403(2):323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Munoz-Fernandez MA, Fernandez MA, Fresno M (1992) Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol Lett 33(1):35–40

    Article  CAS  PubMed  Google Scholar 

  76. Kierszenbaum F et al (1974) Phagocytosis: a defense mechanism against infection with Trypanosoma cruzi. J Immunol 112(5):1839–1844

    CAS  PubMed  Google Scholar 

  77. Alvarez MN et al (2004) Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 432(2):222–232

    Article  CAS  PubMed  Google Scholar 

  78. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4(3):161–177

    Article  CAS  PubMed  Google Scholar 

  79. Piacenza L et al (2009) Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int J Parasitol 39(13):1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parodi-Talice A et al (2007) Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J Mass Spectrom 42(11):1422–1432

    Article  CAS  PubMed  Google Scholar 

  81. Piacenza L et al (2008) Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 410(2):359–368

    Article  CAS  PubMed  Google Scholar 

  82. Paiva CN et al (2012) Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 122(7):2531–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goes GR et al (2016) Trypanosoma cruzi needs a signal provided by reactive oxygen species to infect macrophages. PLoS Negl Trop Dis 10(4):e0004555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Loon B, Markkanen E, Hubscher U (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 9(6):604–616

    Article  CAS  Google Scholar 

  85. Michaels ML, Miller JH (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174(20):6321–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakabeppu Y et al (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5(7):761–772

    Article  CAS  Google Scholar 

  87. Aguiar PH et al (2013) Oxidative stress and DNA lesions: the role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis 7(6):e2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wen JJ et al (2008) Tissue-specific oxidative imbalance and mitochondrial dysfunction during Trypanosoma cruzi infection in mice. Microbes Infect 10(10–11):1201–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dhiman M et al (2012) Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in chagas disease pathogenesis. PLoS One 7(1):e28449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wen JJ, Garg NJ (2018) Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease. PLoS Negl Trop Dis 12(7):e0006687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wen JJ, Yin YW, Garg NJ (2018) PARP1 depletion improves mitochondrial and heart function in Chagas disease: effects on POLG dependent mtDNA maintenance. PLoS Pathog 14(5):e1007065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Andrade LO et al (1999) Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol 100(2):163–172

    Article  CAS  PubMed  Google Scholar 

  93. Andrade LO et al (2010) Differential tissue tropism of Trypanosoma cruzi strains: an in vitro study. Mem Inst Oswaldo Cruz 105(6):834–837

    Article  PubMed  Google Scholar 

  94. Dias PP et al (2017) Cardiomyocyte oxidants production may signal to T. cruzi intracellular development. PLoS Negl Trop Dis 11(8):e0005852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lammel EM et al (1996) Trypanosoma cruzi: involvement of intracellular calcium in multiplication and differentiation. Exp Parasitol 83(2):240–249

    Article  CAS  PubMed  Google Scholar 

  96. Nogueira NP et al (2017) Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production. Free Radic Biol Med 108:183–191

    Article  CAS  PubMed  Google Scholar 

  97. Buetler TM, Krauskopf A, Ruegg UT (2004) Role of superoxide as a signaling molecule. News Physiol Sci 19:120–123

    CAS  PubMed  Google Scholar 

  98. Pervaiz S, Clement MV (2002) A permissive apoptotic environment: function of a decrease in intracellular superoxide anion and cytosolic acidification. Biochem Biophys Res Commun 290(4):1145–1150

    Article  CAS  PubMed  Google Scholar 

  99. Boldogh I et al (2012) Activation of ras signaling pathway by 8-oxoguanine DNA glycosylase bound to its excision product, 8-oxoguanine. J Biol Chem 287(25):20769–20773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vilar-Pereira G et al (2016) Resveratrol reverses functional Chagas heart disease in mice. PLoS Pathog 12(10):e1005947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana O. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, L.O., Dias, P.P. (2019). Role of ROS in T. cruzi Intracellular Development. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_5

Download citation

Publish with us

Policies and ethics