Advertisement

Microbial Genomics in Carbon Management and Energy Production

  • Shatabisha Bhattacharjee
  • Tulika PrakashEmail author
Chapter

Abstract

Microbial genomics has helped us understand the diversity of the entire microbial world. Moreover, the recent development in the field of metagenomics has greatly facilitated the exploration of the unculturable microbes. These fields provide us with a detailed investigation on various functional features and metabolic pathways of microbes. Based on this information, the search of potential microbe(s) for energy production has developed significantly. This development may lead to a limited usage of fossil fuels in the near future. Therefore, researchers are in continuous efforts to develop the potent technologies to harness microbial communities for energy production. One example of such technology is the microbial fuel cells (MFCs). A few promising energy-producing case studies are discussed using this technology. The next application of microbes toward energy is the production of biohydrogen, which is considered as a promising biofuel in the near future. Furthermore, a brief section of the role microbial world, ecosystem, and their relationship with the climatic change is also discussed.

References

  1. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3(5):336CrossRefGoogle Scholar
  2. Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50(1-2):10–15CrossRefGoogle Scholar
  3. Balcom IN et al (2016) Metagenomic Analysis of an ecological waste water treatment plant’s microbial communities and their potential to metabolize pharmaceuticals. F1000Res 5:1881CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brussaard L (1997) Biodiversity and ecosystem functioning in soil. Ambio:563–570Google Scholar
  6. Carr JK, Salminen MO, Albert J, Sanders-Buell E, Gotte D, Birx DL, McCutchan FE (1998) Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants. Virology 247(1):22–31CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cha S, Srinivasan S, Jang JH, Lee D, Lim S, Kim KS et al (2017) Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014, Asian Dust Event. PLoS ONE 12(1):e0170693CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaitanya N, Sivaramakrishna D, Kumar BS, Himabindu V, Lakshminarasu M, Vishwanadham M (2016) Selection of pretreatment method for enriching hydrogen-producing bacteria using anaerobic sewage sludge with three different substrates. Biofuels 7(2):163–171CrossRefGoogle Scholar
  9. Chang S, Li JZ, Liu F (2011) Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew Energy 36(5):1517–1522CrossRefGoogle Scholar
  10. Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A (2015) Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS One 10(5):e0128008CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox P, Wilkinson SP, Anderson JM (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol Fertil Soils 33(3):246–251CrossRefGoogle Scholar
  12. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18CrossRefGoogle Scholar
  13. Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116CrossRefGoogle Scholar
  14. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedPubMedCentralGoogle Scholar
  16. Elsharnouby O, Hafez H, Nakhla G, El Naggar MH (2013) A critical literature review on biohydrogen production by pure cultures. Int J Hydrog Energy 38(12):4945–4966CrossRefGoogle Scholar
  17. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039CrossRefGoogle Scholar
  18. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMedPubMedCentralGoogle Scholar
  19. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353CrossRefGoogle Scholar
  20. Furnham N, de Beer TA, Thornton JM (2012) Current challenges in genome annotation through structural biology and bioinformatics. Curr Opin Struct Biol 22(5):594–601CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390CrossRefGoogle Scholar
  22. Gilbert, J.A. and Dupont, C.L., 2010. Microbial metagenomics: beyond the genome.Google Scholar
  23. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11(5):759–769CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gomez-Alvarez V et al (2012) Metagenomic analysis of drinking water receiving different disinfection treatments. Appl Environ Microbiol 78(17):6095–6102CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goswami R, Chattopadhyay P, Shome A, Banerjee SN, Chakraborty AK, Mathew AK, Chaudhury S (2016) An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech 6(1):72CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35(5):403–419CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202CrossRefGoogle Scholar
  29. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefPubMedPubMedCentralGoogle Scholar
  30. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68(8):3673–3682CrossRefPubMedPubMedCentralGoogle Scholar
  31. Massana R, Gasol JM, Bjørnsen PK, Blackburn N, Hagstrøm Å, Hietanen S, Hygum BH, Kuparinen J, Pedrós-Alió C (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problemsGoogle Scholar
  32. Mitra S et al (2015) In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 3:38CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mohan SV, Pandey A (2013) Biohydrogen production: an introduction. In: Biohydrogen, pp 1–24Google Scholar
  34. Mohan SV, Bhaskar YV, Krishna PM, Rao NC, Babu VL, Sarma PN (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrog Energy 32(13):2286–2295CrossRefGoogle Scholar
  35. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99(1):59–67CrossRefGoogle Scholar
  36. Nelson KE (2003) The future of microbial genomics. Environ Microbiol 5(12):1223–1225CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur J Soil Sci 62(1):105–116CrossRefGoogle Scholar
  38. Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B (2012) Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogeniumphaeum. BMC Genomics 13(1):723CrossRefPubMedPubMedCentralGoogle Scholar
  39. Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87(3):580–593CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435CrossRefPubMedPubMedCentralGoogle Scholar
  41. Prosser JI (2007) Microorganisms cycling soil nutrients and their diversity. In: Modern soil microbiology. CRC Press, Boca RatonGoogle Scholar
  42. Quan X, Shi H, Liu H, Lv P, Qian Y (2004) Enhancement of 2, 4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Res 38(1):245–253CrossRefPubMedPubMedCentralGoogle Scholar
  43. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rahimnejad M, Najafpour G, Ghoreyshi AA (2011) Effect of mass transfer on performance of microbial fuel cell. In: Mass transfer in chemical engineering processes. InTechGoogle Scholar
  45. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756CrossRefGoogle Scholar
  46. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J et al (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 7(9):e46219CrossRefPubMedPubMedCentralGoogle Scholar
  47. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173(14):4371–4378CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shrestha S, Fonoll X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresour Technol 245:1245–1257CrossRefPubMedPubMedCentralGoogle Scholar
  52. Squires B, Macken C, Garcia-Sastre A, Godbole S, Noronha J, Hunt V, Chang R, Larsen CN, Klem E, Biersack K, Scheuermann RH (2007) BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence. Nucleic Acids Res 36(suppl_1):D497–D503CrossRefPubMedPubMedCentralGoogle Scholar
  53. Staley C, Sadowsky MJ (2016) Application of metagenomics to assess microbial communities in water and other environmental matrices. J Mar Biol Assoc U K 96(1):121–129CrossRefGoogle Scholar
  54. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959CrossRefPubMedPubMedCentralGoogle Scholar
  55. Streit WR, Schmitz RA (2004) Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498CrossRefPubMedPubMedCentralGoogle Scholar
  56. Traversi D, Villa S, Lorenzi E, Degan R, Gilli G (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manag 111:173–177CrossRefGoogle Scholar
  57. Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58(7):2292–2295PubMedPubMedCentralGoogle Scholar
  58. Wang H, Paul DR, Chung TS (2013) Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation. J Membr Sci 430:223–233CrossRefGoogle Scholar
  59. Weiman S (2015) Microbes help to drive global carbon cycling and climate change. Microbe Mag 10(6):233–238CrossRefGoogle Scholar
  60. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of Technology (IIT)MandiIndia

Personalised recommendations