Functional Metagenomics for Rhizospheric Soil in Agricultural Systems

  • Estefanía Garibay-Valdez
  • Kadiya CalderónEmail author
  • Francisco Vargas-Albores
  • Asunción Lago-Lestón
  • Luis Rafael Martínez-Córdova
  • Marcel Martínez-PorchasEmail author


The study of plant microbiota has been stimulated by recognizing the fundamental role that the genetic capacity of the associated microbial communities has to modulate the phenotypic expression of plants, which is crucial for its health, physiology, and productivity. All genes in a metagenome can be described by whole-metagenome shotgun sequencing, but it is time-consuming, and a high level of experience is required. Alternatively, the amplification and high-throughput sequencing of the16S-rRNA gene allow describing the microbial composition. Then functional activities can be inferred by listing the abundance of each gene. Also, the identification and the quantification of microbiome transcripts are now accessible to determine the profile and changes in gene expression occurring in a microbial community in response to environmental or experimental variations. Considering the beneficial role of microbial communities in soil environments, it is important increasing the understanding of plant-microbe relationships to provide biotechnological information for control and management with sustainable practices.


  1. Almeida A, Mitchell AL, Tarkowska A, Finn RD (2018) Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. GigaScience 7:giy054CrossRefGoogle Scholar
  2. Aßhauer KP, Meinicke P (2013) On the estimation of metabolic profiles in metagenomics. In: On the estimation of metabolic profiles in metagenomics, OASIcs-OpenAccess Series in Informatics: Schloss Dagstuhl-Leibniz-Zentrum fuer InformatikGoogle Scholar
  3. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884CrossRefGoogle Scholar
  4. Balvočiūtė M, Huson DH (2017) SILVA, RDP, Greengenes, NCBI and OTT, how do these taxonomies compare? BMC Genomics 18:114CrossRefGoogle Scholar
  5. Bejerano-Sagie M, Xavier KB (2007) The role of small RNAs in quorum sensing. Curr Opin Microbiol 10:189–198CrossRefGoogle Scholar
  6. Béné C, Arthur R, Norbury H, Allison E, Beveridge M, Bush S, Campling L, Leschen W, Little D, Squires D, Thilsted S, Troell M, Williams M (2016) Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Develop 79:177–196Google Scholar
  7. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefGoogle Scholar
  8. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793CrossRefGoogle Scholar
  9. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  10. Dos Santos DFK, Istvan P, Quirino BF, Kruger RH (2017) Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments. Microb Ecol 73:479–491CrossRefGoogle Scholar
  11. Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831CrossRefGoogle Scholar
  12. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J, Westram R, Ludwig W (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176CrossRefGoogle Scholar
  13. Hayden HL, Savin K, Wadeson J, Gupta V, Mele PM (2018) Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859CrossRefGoogle Scholar
  14. Jones AD, Ejeta G (2016) A new global agenda for nutrition and health: the importance of agriculture and food systems. Bull World Health Organ 94:228–229CrossRefGoogle Scholar
  15. Jovel J, Patterson J, Wang W, Hotte N, O’keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459CrossRefGoogle Scholar
  16. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484CrossRefGoogle Scholar
  17. Kothari V, Kothari C, Rank J, Joshi A, Singh RP, Kothari R (2017) Metatranscriptomic 16 Rhizosphere for finding of the plant. Understanding host-microbiome interactions – an omics approach: Host-Microbiome Association 1:267pGoogle Scholar
  18. Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700CrossRefGoogle Scholar
  19. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6Google Scholar
  20. Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotech 31:814–821CrossRefGoogle Scholar
  21. Lazarevic V, François P (2013) Functional genomics of microbial pathogens. Brief Funct Genomics 12:289–290CrossRefGoogle Scholar
  22. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13:787CrossRefGoogle Scholar
  23. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663CrossRefGoogle Scholar
  24. Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587CrossRefGoogle Scholar
  25. Morgan XC, Huttenhower C (2012) Human microbiome analysis. PLoS Comput Biol 8:e1002808CrossRefGoogle Scholar
  26. Ortiz-Estrada ÁM, Gollas-Galván T, Martínez-Córdova LR, Martínez-Porchas M (2019) Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Rev Aquacult 11:234–245Google Scholar
  27. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124CrossRefGoogle Scholar
  28. Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G (2013) Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol 4:145CrossRefGoogle Scholar
  29. Popovic A, Parkinson J (2018) Characterization of eukaryotic microbiome using 18S amplicon sequencing. In: Press SH (ed) Microbiome analysis. Springer, New York, pp 29–48Google Scholar
  30. Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473Google Scholar
  31. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844CrossRefGoogle Scholar
  32. Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470CrossRefGoogle Scholar
  33. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289CrossRefGoogle Scholar
  34. Rooijers K, Kolmeder C, Juste C, Doré J, De Been M, Boeren S, Galan P, Beauvallet C, De Vos WM, Schaap PJ (2011) An iterative workflow for mining the human intestinal metaproteome. BMC Genomics 12:6CrossRefGoogle Scholar
  35. Siegwald L, Touzet H, Lemoine Y, Hot D, Audebert C, Caboche S (2017) Assessment of common and emerging bioinformatics pipelines for targeted metagenomics. PLoS One 12:e0169563CrossRefGoogle Scholar
  36. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TC, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. Msystems 1:e00028–e00016CrossRefGoogle Scholar
  37. Vargas-Albores F, Martinez-Cordova LR, Martinez-Porchas M, Calderon K, Lago-Leston A (2018) Functional metagenomics: a tool to gain knowledge for agronomic and veterinary sciences. Biotechnol Genet Eng Rev:1–23Google Scholar
  38. Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC, Parkhill J (2016) Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol 16:274CrossRefGoogle Scholar
  39. Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232CrossRefGoogle Scholar
  40. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One 9:e90053CrossRefGoogle Scholar
  41. Yang C, Ji Y, Wang X, Yang C, Douglas WY (2013) Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci China Life Sci 56:73–81CrossRefGoogle Scholar
  42. Zhu S, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107:324–333CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Estefanía Garibay-Valdez
    • 1
  • Kadiya Calderón
    • 2
    Email author
  • Francisco Vargas-Albores
    • 1
  • Asunción Lago-Lestón
    • 3
  • Luis Rafael Martínez-Córdova
    • 2
  • Marcel Martínez-Porchas
    • 1
    Email author
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen AnimalHermosilloMexico
  2. 2.Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de SonoraUniversidad de SonoraHermosilloMexico
  3. 3.Centro de Investigación Científica y de Educción Superior de EnsenadaEnsenadaMexico

Personalised recommendations