Advertisement

RNA-Guided CRISPR-Cas9 System for Removal of Microbial Pathogens

  • Gargi Bhattacharjee
  • Khushal Khambhati
  • Vijai SinghEmail author
Chapter

Abstract

CRISPR-Cas9 technology has been cherished and well appreciated by the scientific community. The popularity of CRISPR-Cas9 technology is because it provides simple and efficient directions for genome engineering with feasible applications in a broad range of organisms. It stands to reason that the development of CRISPR-Cas9 is probably among the greatest revolution in the field of molecular biology, ever since the discovery of PCR. Genome engineering of microbes and other organisms may open up newer avenues to achieve a dynamic ecosystem. In this chapter, research on the use of CRISPR-Cas9 technology as an anti-phytopathogenic arsenal has been highlighted. Furthermore, the engineered organism developed using CRISPR-Cas9 technology has also been explained. Besides the applicative side, the background and molecular mechanisms of the CRISPR-Cas9 system have been mentioned and explained thoroughly.

Keywords

CRISPR-Cas9 Genome editing Fungi Parasite Bacteria Virus Agro-ecosystem 

Notes

Acknowledgments

This work was supported by Puri Foundation for Education in India.

References

  1. Adli M (2018) The CRISPR toolkit for genome editing and beyond. Nat Commun 9(1):1911CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altenbuchner J (2016) Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol 82(17):5421–5427CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andolfo G, Iovieno P, Frusciante L, Ercolano MR (2016) Genome-editing technologies for enhancing plant disease resistance. Front Plant Sci 7:1813CrossRefPubMedPubMedCentralGoogle Scholar
  5. Avey D, Tepper S, Li W, Turpin Z, Zhu F (2015) Phosphoproteomic analysis of KSHV-infected cells reveals roles of ORF45-activated RSK during lytic replication. PLoS Pathog 11(7):1004993CrossRefGoogle Scholar
  6. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145CrossRefGoogle Scholar
  7. Barrios-González J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85(4):869–883CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bern C, Kjos S, Yabsley MJ, Montgomery SP (2011) Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24(4):655–681CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bierle CJ, Anderholm KM, Wang JB, McVoy MA, Schleiss MR (2016) Targeted mutagenesis of guinea pig cytomegalovirus using CRISPR/Cas9-mediated gene editing. J Virol 90(15):6989–6998.  https://doi.org/10.1128/JVI.00139-16CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bikard D, Marraffini LA (2012) Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol 24(1):15–20CrossRefGoogle Scholar
  11. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti V, Marraffini LA (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defence in prokaryotes. Science 321(5891):960–964CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burgio G (2018) Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology. Genome Biol 19(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27(12):1151–1162CrossRefGoogle Scholar
  16. Carroll D (2017) Genome Editing: Past, Present, and Future. Yale J Biol Med 90(4):653–659PubMedPubMedCentralGoogle Scholar
  17. Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, Glover CV III, Graveley BR, Terns RM, Terns MP (2014) The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol 93(1):98–112CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen J, Lai Y, Wang L, Zhai S, Zou G, Zhou Z, Cui C, Wang S (2017) CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep 7:45763CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen YC, Sheng J, Trang P, Liu F (2018) Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses 10(6):291CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chiurillo MA, Lander N, Bertolini MS, Storey M, Vercesi AE, Docampo R (2017) Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi. MBio 8(3):00574–00517CrossRefGoogle Scholar
  21. Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159(6):1300–1311CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42(10):6091–6105CrossRefPubMedPubMedCentralGoogle Scholar
  24. Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32(11):1141–1145CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Keersmaecker SC, Sonck K, Vanderleyden J (2006) Let LuxS speak up in AI-2 signaling. Trends Microbiol 14(3):114–119CrossRefGoogle Scholar
  27. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deng H, Gao R, Liao X, Cai Y (2017) CRISPR system in filamentous fungi: Current achievements and future directions. Gene 627:212–221CrossRefGoogle Scholar
  29. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dillingham MS, Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72(4):642–671CrossRefPubMedPubMedCentralGoogle Scholar
  31. Diner BA, Lum KK, Toettcher JE, Cristea IM (2016) Viral DNA sensors IFI16 and Cyclic GMP-AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus infection. MBio 7(6):01553–01516CrossRefGoogle Scholar
  32. Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17(1):127–139CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112(49):6736–6743CrossRefGoogle Scholar
  36. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71CrossRefPubMedPubMedCentralGoogle Scholar
  37. Garrett RA, Shah SA, Erdmann S, Liu G, Mousaei M, León-Sobrino C, Peng W, Gudbergsdottir S, Deng L, Vestergaard G, Peng X (2015) CRISPR-Cas adaptive immune systems of the sulfolobales: Unravelling their complexity and diversity. Life 5(1):783–817CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):2579–2586CrossRefGoogle Scholar
  39. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32(8):819–821CrossRefPubMedPubMedCentralGoogle Scholar
  40. Global Health Observatory (GHO) data: HIV/AIDS (2018) World Health Organization http://www.who.int/gho/hiv/en/. Accessed 4 Oct 2018
  41. Gohil N, Ramírez-García R, Panchasara H, Patel S, Bhattacharjee G, Singh V (2018) Book Review: Quorum Sensing vs. Quorum Quenching: A Battle With No End in Sight. Front Cell Infect Microbiol 8:106CrossRefGoogle Scholar
  42. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387):439–444CrossRefPubMedPubMedCentralGoogle Scholar
  43. Guo JC, Tang YD, Zhao K, Wang TY, Liu JT, Gao JC, Chang XB, Cui HY, Tian ZJ, Cai XH, An TQ (2016) Highly efficient CRISPR/Cas9-mediated homologous recombination promotes the rapid generation of bacterial artificial chromosomes of pseudorabies virus. Front Microbiol 7:2110PubMedPubMedCentralGoogle Scholar
  44. Gupta RM, Musunuru K (2014) Expanding the genetic editing toolkit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124(10):4154–4161CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9(9):675–676CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T (2016) Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol Rev 120(1):111–123CrossRefGoogle Scholar
  47. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519(7542):199–202CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  50. Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, Huang Y, You M (2016) CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochem Mol Biol 75:98–106CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997CrossRefPubMedPubMedCentralGoogle Scholar
  56. Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B (2014) IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog 10(11):1004503CrossRefGoogle Scholar
  57. Kanda T, Furuse Y, Oshitani H, Kiyono T (2016) Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains. J Virol 90(9):4383–4393 90(9):4383-4393CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kang S, Kim J, Hur JK, Lee SS (2017) CRISPR-based genome editing of clinically important Escherichia coli SE15 isolated from indwelling urinary catheters of patients. J Med Microbiol 66(1):18–25CrossRefPubMedPubMedCentralGoogle Scholar
  59. Karginov FV, Hannon GJ (2010) The CRISPR system: small RNA-guided defence in bacteria and archaea. Mol Cell 37(1):7–19CrossRefPubMedPubMedCentralGoogle Scholar
  60. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10(5):841–851CrossRefPubMedPubMedCentralGoogle Scholar
  61. Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama JI (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38(4):637–642CrossRefPubMedPubMedCentralGoogle Scholar
  62. Khambhati K, Bhattacharjee G, Singh V (2018) Current progress in CRISPR-based diagnostic platforms. J Cell Biochem.  https://doi.org/10.1002/jcb.27690
  63. Khatodia S, Bhatotia K, Tuteja N (2017) Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered 8(3):274–279CrossRefPubMedPubMedCentralGoogle Scholar
  64. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869CrossRefPubMedPubMedCentralGoogle Scholar
  65. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kuang D, Qiao J, Li Z, Wang W, Xia H, Jiang L, Dai J, Fang Q, Dai X (2017) Tagging to endogenous genes of Plasmodium falciparum using CRISPR/Cas9. Parasit Vectors 10(1):595CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kucheria R, Dasgupta P, Sacks SH, Khan MS, Sheerin NS (2005) Urinary tract infections: new insights into a common problem. Postgrad Med J 81(952):83–86CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kuivanen J, Wang YMJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Factories 15(1):210CrossRefGoogle Scholar
  69. Kumar A, Jha A (2017) Antifungals used against candidiasis. In: Kumar A, Jha A (eds) Anticandidal agents. Academic Press/Elsevier, New York, pp 11–39. ISBN 9780128113110CrossRefGoogle Scholar
  70. La Russa MF, Qi LS (2015) The new state of the art: CRISPR for gene activation and repression. Mol Cell Biol 35(22):3800–3809CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lander N, Li ZH, Niyogi S, Docampo R (2015) CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzireveals their role in flagellar attachment. MBio 6(4):01012–01015CrossRefGoogle Scholar
  72. Lecellier A, Gaydou V, Mounier J, Hermet A, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD (2015) Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiol 45:126–134CrossRefPubMedPubMedCentralGoogle Scholar
  73. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520(7548):505–510CrossRefPubMedPubMedCentralGoogle Scholar
  74. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu Q, Chen Y, Li Q, Wu L, Wen T (2017) Dcf1 regulates neuropeptide expression and maintains energy balance. Neurosci Lett 650:1–7CrossRefGoogle Scholar
  76. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963CrossRefPubMedPubMedCentralGoogle Scholar
  78. Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  79. Miyagishi M, Taira K (2002) U6 promoter–driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20(5):497–500CrossRefGoogle Scholar
  80. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(3):733–740CrossRefGoogle Scholar
  81. Mosberg JA, Gregg CJ, Lajoie MJ, Wang HH, Church GM (2012) Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PloS ONE 7(9):44638CrossRefGoogle Scholar
  82. Nielsen J, Fussenegger M, Keasling J, Lee SY, Liao JC, Prather K, Palsson B (2014) Engineering synergy in biotechnology. Nat Chem Biol 10(5):319–322CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ophinni Y, Inoue M, Kotaki T, Kameoka M (2018) CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Sci Rep 8(1):7784CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL, Davidson AR (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167(7):1829–1838CrossRefPubMedPubMedCentralGoogle Scholar
  85. Payungwoung T, Shinzawa N, Hino A, Nishi T, Murata Y, Yuda M, Iwanaga S (2018) CRISPR/Cas9 system in Plasmodium falciparum using the centromere plasmid. Parasitol Int 67(5):605–608CrossRefGoogle Scholar
  86. Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5(7):754–764CrossRefGoogle Scholar
  87. Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S (2018) CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathog 14(6):1006990CrossRefGoogle Scholar
  88. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128CrossRefGoogle Scholar
  89. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168(1–2):150–158CrossRefGoogle Scholar
  90. Roberts RJ (2005) How restriction enzymes became the workhorses of molecular biology. Proc Natl Acad Sci U S A 102(17):5905–5908CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):012427CrossRefGoogle Scholar
  92. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(1):461Google Scholar
  93. Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilagomaydis using the CRISPR–Cas system. Fungal Genet Biol 89:3–9CrossRefGoogle Scholar
  94. Shabbir MA, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z (2016) Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front Microbiol 7:1292CrossRefPubMedPubMedCentralGoogle Scholar
  95. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10(5):891–899CrossRefPubMedPubMedCentralGoogle Scholar
  96. Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443CrossRefGoogle Scholar
  97. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA (2017) Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 3(7):e1701620CrossRefPubMedPubMedCentralGoogle Scholar
  98. Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose-medical, pharmaceutical and electronic applications. InTechOpen.  https://doi.org/10.5772/55178
  99. Singh V, Braddick D, Dhar PK (2017) Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599:1–18CrossRefGoogle Scholar
  100. Singh V, Gohil N, Ramírez-García R, Braddick D, Fofié CK (2018) Recent advances in CRISPR-Cas9 genome editing technology for biological and biomedical investigations. J Cell Biochem 119(1):81–94CrossRefGoogle Scholar
  101. Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y (2015) First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17(10):1405–1412CrossRefGoogle Scholar
  102. Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527(7576):110–113CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sturbelle RT, de Avila LFDC, Roos TB, Borchardt JL, Dellagostin OA, Leite FPL (2015) The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet Microbiol 180(3-4):245–252CrossRefPubMedPubMedCentralGoogle Scholar
  104. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111(27):9798–9803CrossRefPubMedPubMedCentralGoogle Scholar
  105. Thrane U, Anderson B, Frisvad JC, Smedsgaard J (2007) The exo-metabolome in filamentous fungi. In: Nielsen J, Jewett MC (eds) Metabolomics. (Topics in current genetics), vol 18. Springer, Berlin, pp 235–252Google Scholar
  106. Umesha S, Singh P, Singh R (2017) Microbiology biotechnology and sustainable agriculture. In: Singh RL, Mondal S (eds) Biotechnology for sustainable agriculture: emerging approaches and strategies. Woodhead Publishing, Cambridge, UK, pp 185–205Google Scholar
  107. Van Diemen FR, Lebbink RJ (2017) CRISPR/Cas9, a powerful tool to target human herpesviruses. Cell Microbiol 19(2).  https://doi.org/10.1111/cmi.12694
  108. Wang J, Li J, Zhao H, Sheng G, Wang M, Yin M, Wang Y (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163(4):840–853CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wang D, Wang XW, Peng XC, Xiang Y, Song SB, Wang YY, Chen L, Xin VW, Lyu YN, Ji J, Ma ZW (2018) CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther 25(5-6):93–105CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30(5):1119–1139CrossRefPubMedPubMedCentralGoogle Scholar
  111. Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA (2016) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol 6(1):62–68CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wei Y, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43(3):1749–1758CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wiles MV, Qin W, Cheng AW, Wang H (2015) CRISPR–Cas9-mediated genome editing and guide RNA design. Mamm Genome 26(9-10):501–510CrossRefPubMedPubMedCentralGoogle Scholar
  114. Woloshuk CP, Shim WB (2013) Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 37(1):94–109CrossRefGoogle Scholar
  115. Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1-2):29–44CrossRefGoogle Scholar
  116. Xu X, Fan S, Zhou J, Zhang Y, Che Y, Cai H, Wang L, Guo L, Liu L, Li Q (2016) The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of α-4 gene transcription. Virol J 13:152CrossRefPubMedPubMedCentralGoogle Scholar
  117. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–5983CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhang D, Li Z, Li JF (2015) Genome editing: new antiviral weapon for plants. Nat Plants 1(10):15146CrossRefGoogle Scholar
  119. Zhang C, Meng X, Wei X, Lu L (2016) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gargi Bhattacharjee
    • 1
  • Khushal Khambhati
    • 1
  • Vijai Singh
    • 1
    • 2
    Email author
  1. 1.School of Biological Sciences and BiotechnologyInstitute of Advanced ResearchGandhinagarIndia
  2. 2.Department of Biosciences, School of SciencesIndrashil UniversityGujaratIndia

Personalised recommendations