Molecular Biology Techniques for the Identification and Genotyping of Microorganisms

  • Nisarg Gohil
  • Happy Panchasara
  • Shreya Patel
  • Vijai SinghEmail author


The advent in molecular biology techniques has enabled, to a great extent, numerous identification and detection techniques of microorganisms by amplifying specific conserved DNA sequences. From time-to-time, the tremendous modifications have been employed in search of a rapid and inexpensive microbial identification method and now a whole genome to be sequenced is possible. In this chapter, we have described the different molecular identification techniques including 16S/18S rRNA, ITS and whole-genome sequencing as well as genotyping techniques such as pulse field gel electrophoresis, AFLP, RAPD, RFLP, ribotyping, BOX, ERIC, rep-PCR and multi-locus sequence typing with their basic principle, procedure, strengths and weaknesses.


Identification Genotyping DNA sequencing 16S rRNA 18S rRNA ITS Whole genome sequencing PFGE ERIC BOX Ribotyping AFLP RAPD REP-PCR RFLP MLST 



This work was supported by Puri Foundation for Education in India.


  1. Aanensen DM, Spratt BG (2005) The multilocus sequence typing network: mlst. net. Nucleic Acids Res 33:W728–W733CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdollahi S, Ramazanzadeh R, Kalantar E, Zamani S (2014) Molecular epidemiology of Staphylococcus aureus with ERIC-PCR method. Bull Env Pharmacol Life Sci 3:158–165Google Scholar
  3. Abdollahzadeh J, Zolfaghari S (2014) Efficiency of rep-PCR fingerprinting as a useful technique for molecular typing of plant pathogenic fungal species: Botryosphaeriaceae species as a case study. FEMS Microbiol Lett 361(2):144–157CrossRefGoogle Scholar
  4. Adékambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17(1):37–45CrossRefGoogle Scholar
  5. Adzitey F, Huda N, Ali GRR (2013) Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3. Biotech 3(2):97–107Google Scholar
  6. Ali BA, Huang TH, Qin DN, Wang XM (2004) A review of random amplified polymorphic DNA (RAPD) markers in fish research. Rev Fish Biol Fish 14(4):443–453CrossRefGoogle Scholar
  7. Aljindan R, Alsamman K, Elhadi N (2018) ERIC-PCR genotyping of Acinetobacter baumannii isolated from different clinical specimens. Saudi J Med Med Sci 6(1):13–17CrossRefGoogle Scholar
  8. Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A (2017) Forensic genetics and genomics: much more than just a human affair. PLoS Genet 13(9):e1006960CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ashayeri-panah M, Eftekhar F, Feizabadi MM (2012) Development of an optimized random amplified polymorphic DNA protocol for fingerprinting of Klebsiella pneumonia. Lett Appl Microbiol 54(4):272–279CrossRefGoogle Scholar
  10. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Env Microbiol 71(12):7724–7736CrossRefGoogle Scholar
  11. Auda IG, Al-Kadmy I, Kareem SM, Lafta AK, A’Affus MHO, Khit IAA, Kheraif A, Abdullah A, Divakar DD, Ramakrishnaiah R (2017) RAPD-and ERIC-based typing of clinical and environmental Pseudomonas aeruginosa isolates. J AOAC Int 100(2):532–536CrossRefGoogle Scholar
  12. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244PubMedPubMedCentralGoogle Scholar
  13. Behler J, Vijay D, Hess WR, Akhtar MK (2018) CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol 36(10):996–1010CrossRefGoogle Scholar
  14. Bikard D, Barrangou R (2017) Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 37:155–160CrossRefGoogle Scholar
  15. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bilung LM, Pui CF, Su’ut L, Apun K (2018) Evaluation of BOX-PCR and ERIC-PCR as molecular typing tools for pathogenic Leptospira. Dis Markers 1351634Google Scholar
  17. Birren BW, Lai E (1993) Pulsed field gel electrophoresis: a practical guide. Academic Press Inc, San DiegoGoogle Scholar
  18. Bolhuis PA, Defesche JC, Van der Helm HJ (1987) Differential diagnosis of genetic disease by DNA restriction fragment length polymorphisms. Clin Chim Acta 165(2–3):271–276CrossRefGoogle Scholar
  19. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66(10):4356–4360CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bouchet V, Huot H, Goldstein R (2008) Molecular genetic basis of ribotyping. Clin Microbiol Rev 21(2):262–273CrossRefPubMedPubMedCentralGoogle Scholar
  21. Budowle B, Sajantila A, Hochmeister MN, Comey CT (1994) The application of PCR to forensic science. In: Mullis KB, Ferré F, Gibbs RA (eds) The polymerase chain reaction. Birkhäuser, Boston, pp 244–256CrossRefGoogle Scholar
  22. Chen X, Ugaz VM (2008) Investigating DNA migration in pulsed fields using a miniaturized FIGE system. Electrophoresis 29(23):4761–4767CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cho S, Shin J, Cho BK (2018) Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci 19(4):1089CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cooper DN, Schmidtke J (1993) Diagnosis of human genetic disease using recombinant DNA. Hum Genet 92(3):211–236CrossRefGoogle Scholar
  25. Cowan LS, Diem L, Brake MC, Crawford JT (2004) Transfer of a Mycobacterium tuberculosis genotyping method, spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J Clin Microbiol 42(1):474–477CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Sá Guimarães A, Dorneles EMS, Andrade GI, Lage AP, Miyoshi A, Azevedo V, Gouveia AMG, Heinemann MB (2011) Molecular characterization of Corynebacterium pseudotuberculosis isolates using ERIC-PCR. Vet Microbiol 153(3–4):299–306CrossRefGoogle Scholar
  27. Debener T, Bartels C, Mattiesch L (1996) RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Mol Breed 2(4):321–327CrossRefGoogle Scholar
  28. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  29. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dimri GP, Rudd KE, Morgan MK, Bayat H, Ames GF (1992) Physical mapping of repetitive extragenic palindromic sequences in Escherichia coli and phylogenetic distribution among Escherichia coli strains and other enteric bacteria. J Bacteriol 174(14):4583–4593CrossRefPubMedPubMedCentralGoogle Scholar
  31. Donelli G, Vuotto C, Mastromarino P (2013) Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb Ecol Health Dis 24(1):20105Google Scholar
  32. Dorneles EM, Santana JA, Ribeiro D, Dorella FA, Guimarães AS, Moawad MS, Selim SA, Garaldi ALM, Miyoshi A, Ribeiro MG, Gouveia AM (2014) Evaluation of ERIC-PCR as genotyping method for Corynebacterium pseudotuberculosis isolates. PLoS One 9(6):e98758CrossRefPubMedPubMedCentralGoogle Scholar
  33. Drayna D, Davies K, Hartley D, Mandel JL, Camerino G, Williamson R, White R (1984) Genetic mapping of the human X chromosome by using restriction fragment length polymorphisms. Proc Natl Acad Sci U S A 81(9):2836–2839CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dubey AK, Hussain N, Mittal N (2010) HindIII-based restriction fragment length polymorphism in hemophilic and nonhemophilic patients. J Nat Sci Biol Med 1(1):25–28CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ecker DJ, Sampath R, Blyn LB, Eshoo MW, Ivy C, Ecker JA, Libby B, Samant V, Sannes-Lowery KA, Melton RE, Russell K, Freed N, Barrozo C, Wu J, Rudnick K, Desai A, Moradi E, Knize DJ, Robbins DW, Hannis JC, Harrell PM, Massire C, Hall TA, Jiang Y, Ranken R, Drader JJ, White N, McNeil JA, Crooke ST, Hofstadler SA (2005) Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl Acad Sci U S A 102(22):8012–8017CrossRefPubMedPubMedCentralGoogle Scholar
  36. Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10(1):15Google Scholar
  37. Farrer RA, Kemen E, Jones JD, Studholme DJ (2009) De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett 291(1):103–111CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42(1):166–170Google Scholar
  40. Góes ACDS, Silva DAD, Domingues CS, Marreiro Sobrinho J, Carvalho EFD (2002) Identification of a criminal by DNA typing in a rape case in Rio de Janeiro, Brazil. Sao Paulo Med J 120(3):77–79CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gohil N, Panchasara H, Patel S, Ramírez-García R, Singh V (2017) Book review: Recent advances in yeast metabolic engineering. Front Bioeng Biotechnol 5:71Google Scholar
  42. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gosiewski T, Brzychczy-Wloch M (2015) The use of PFGE method in genotyping of selected bacteria species of the Lactobacillus genus. Methods Mol Bio 1301:225–240CrossRefGoogle Scholar
  44. Guasmi F, Elfalleh W, Hannachi H, Fères K, Touil L, Marzougui N, Triki T, Ferchichi A (2012) The use of ISSR and RAPD markers for genetic diversity among south tunisian barley. ISRN Agron 952196Google Scholar
  45. Gulig PA, de Crécy-Lagard V, Wright AC, Walts B, Telonis-Scott M, McIntyre LM (2010) SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 11:512CrossRefPubMedPubMedCentralGoogle Scholar
  46. Han MM, Mu LZ, Liu XP, Zhao J, Liu XF, Liu H (2014) ERIC-PCR genotyping of Pseudomonas aeruginosa isolates from haemorrhagic pneumonia cases in mink. Vet Rec Open 1(1):e000043CrossRefPubMedPubMedCentralGoogle Scholar
  47. Han Y, Liu Y, Wang H, Liu X (2017) The evolution of Vicia ramuliflora (Fabaceae) at tetraploid and diploid levels revealed with FISH and RAPD. PLoS One 12(1):e0170695CrossRefPubMedPubMedCentralGoogle Scholar
  48. Heng SK, Heng CK, Puthucheary SD (2009) Stacking gels: a method for maximising output for pulsed-field gel electrophoresis. Indian J Med Microbiol 27(2):142–145CrossRefPubMedPubMedCentralGoogle Scholar
  49. Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2(3):677–684CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hulton CSJ, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5(4):825–834CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526–531CrossRefPubMedPubMedCentralGoogle Scholar
  52. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9):2761–2764CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471CrossRefPubMedPubMedCentralGoogle Scholar
  55. Khambhati K, Bhattacharjee G, Singh V (2018) Current progress in CRISPR-based diagnostic platforms. J Cell Biochem 120:2721. Scholar
  56. Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A (2016) Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras 31(3):206–211CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kosek M, Yori PP, Gilman RH, Vela H, Olortegui MP, Chavez CB, Calderon M, Bao JP, Hall E, Maves R, Burga R (2012) Facilitated molecular typing of Shigella isolates using ERIC-PCR. Am J Trop Med Hyg 86(6):1018–1025CrossRefPubMedPubMedCentralGoogle Scholar
  59. Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, Knapp SJ, Strauss SH (1998) RAPD genome maps of Douglas-fir. J Hered 89(3):197–205CrossRefGoogle Scholar
  60. Kumar A, Kumar A, Pratush A (2014) Molecular diversity and functional variability of environmental isolates of Bacillus species. Springerplus 3(1):312CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lall GK, Darby AC, Nystedt B, MacLeod ET, Bishop RP, Welburn SC (2010) Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations. Parasit Vectors 3(1):47CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lanoot B, Vancanneyt M, Dawyndt P, Cnockaert M (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27(1):84–92CrossRefPubMedPubMedCentralGoogle Scholar
  63. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Pontén TS, Ussery DW, Aarestrup FM, Lund O (2012) Multilocus sequence typing of total genome sequenced bacteria. J Clin Microbiol 50(4):1355–1361CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lian J, HamediRad M, Zhao H (2018) Advancing metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas system. Biotechnol J 13(9):e1700601CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ludwig W, Kirchhof G, Klugbauer N, Weizenegger M, Betzl D, Ehrmann M, Hertel C, Jilg S, Tatzel R, Zitzelsberger H, Liebl S, Hochberger M, Shah J, Lane D, Wallnöfer PR, Scheifer KH (1992) Complete 23S ribosomal RNA sequences of gram-positive bacteria with a low DNA G+ C content. Syst Appl Microbiol 15(4):487–501CrossRefGoogle Scholar
  66. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lukácsi G, Tako M, Nyilasi I (2006) Pulsed-field gel electrophoresis: a versatile tool for analysis of fungal genomes. A review. Acta Microbiol Immunol Hung 53(1):95–104CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lupski JR, Weinstock GM (1992) Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol 174(14):4525–4529CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ma X, Chen SY, Bai SQ, Zhang XQ, Li DX, Zhang CB, Yan JJ (2012) RAPD analysis of genetic diversity and population structure of Elymus sibiricus (Poaceae) native to the southeastern Qinghai-Tibet Plateau, China. Genet Mol Res 11(3):2708–2718CrossRefPubMedPubMedCentralGoogle Scholar
  70. Macedo NR, Oliveira SR, Lage AP, Santos JL, Araújo MR, Guedes RMC (2011) ERIC-PCR genotyping of Haemophilus parasuis isolates from Brazilian pigs. Vet J 188(3):362–364CrossRefGoogle Scholar
  71. Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR (1994) The ribosomal database project. Nucleic Acids Res 22(17):3485–3487CrossRefPubMedPubMedCentralGoogle Scholar
  72. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefPubMedPubMedCentralGoogle Scholar
  74. Maringele L, Lydall D (2006) Pulsed-field gel electrophoresis of budding yeast chromosomes. Methods Mol Bio 313:65–73Google Scholar
  75. Marques AS, Marchaison A, Gardan L, Samson R (2008) BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae: P. viridiflava group. Genet Mol Biol 31(1):106–115CrossRefGoogle Scholar
  76. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5(1):28CrossRefPubMedPubMedCentralGoogle Scholar
  77. Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ, Claverys JP (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20(13):3479–3483CrossRefPubMedPubMedCentralGoogle Scholar
  78. Maule J (1998) Pulsed-field gel electrophoresis. Mol Biotechnol 9(2):107–126CrossRefGoogle Scholar
  79. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564CrossRefPubMedPubMedCentralGoogle Scholar
  80. McGhee GC, Sundin GW (2012) Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 7(7):e41706CrossRefPubMedPubMedCentralGoogle Scholar
  81. Meintanis C, Chalkou KI, Kormas KA, Lymperopoulou DS, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2008) Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 46(3):395–401CrossRefGoogle Scholar
  82. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46CrossRefGoogle Scholar
  83. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12(3):106–117CrossRefGoogle Scholar
  84. Mishra RK, Pandey BK, Singh V, Mathew AJ, Pathak N, Zeeshan M (2013a) Molecular detection and genotyping of Fusarium oxysporum f. sp. psidii Isolated from different agro-ecological regions of India. J Microbiol 51(4):405–412CrossRefGoogle Scholar
  85. Mishra RK, Pandey BK, Singh V, Pathak N, Zeeshan M (2013b) Genetic characterization of Fusarium oxysporum isolated from Guava in northern India. Afr J Microbiol Res 7(33):4228–4234Google Scholar
  86. Mishra RK, Pandey BK, Pathak N, Zeeshan M (2015) BOX-PCR-and ERIC-PCR-based genotyping and phylogenetic correlation among Fusarium oxysporum isolates associated with wilt disease in Psidium guajava L. Biocatal Agric Biotechnol 4(1):25–32CrossRefGoogle Scholar
  87. MLST allelic profiles and sequences, University of Oxford 2018 <>. Accessed on 08 Sept 2018
  88. Moon BC, Lee YM, Kim WJ, Ji Y, Kang YM, Choi G (2016) Development of molecular markers for authentication of the medicinal plant species Patrinia by random amplified polymorphic DNA (RAPD) analysis and multiplex-PCR. Hortic Environ Biotechnol 57(2):182–190CrossRefGoogle Scholar
  89. Morales RGF, Resende JTV, Faria MV, Andrade MC, Resende LV, Delatorre CA, Silva PRD (2011) Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Sci Agric 68(6):665–670CrossRefGoogle Scholar
  90. Moser H, Lee M (1994) RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theor Appl Genet 87(8):947–956CrossRefGoogle Scholar
  91. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14(10):389–394CrossRefGoogle Scholar
  92. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285CrossRefGoogle Scholar
  93. Nassonova ES (2008) Pulsed field gel electrophoresis: theory, instruments and application. Cell Tissue Biol 2(6):557–565CrossRefGoogle Scholar
  94. Niemann S, Dammann-Kalinowski T, Nagel A, Pühler A, Selbitschka W (1999) Genetic basis of enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint pattern in Sinorhizobium meliloti and identification of S. meliloti employing PCR primers derived from an ERIC-PCR fragment. Arch Microbiol 172(1):22–30CrossRefGoogle Scholar
  95. Okatani AT, Ishikawa M, Yoshida SI, Sekiguchi M, Tanno K, Ogawa M, Horikita T, Horisaka T, Taniguchi T, Kato Y, Hayashidani H (2004) Automated ribotyping, a rapid typing method for analysis of Erysipelothrix spp. strains. J Vet Med Sci 66(6):729–733CrossRefGoogle Scholar
  96. Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37(6):1661–1669PubMedPubMedCentralGoogle Scholar
  97. Olvera A, Calsamiglia M, Aragon V (2006) Genotypic diversity of Haemophilus parasuis field strains. Appl Environ Microbiol 72(6):3984–3992CrossRefPubMedPubMedCentralGoogle Scholar
  98. Panneerchelvam S, Norazmi MN (2003) Forensic DNA profiling and database. Malays J Med Sci 10(2):20–26PubMedPubMedCentralGoogle Scholar
  99. Parizad EG, Parizad EG, Valizadeh A (2016) The application of pulsed field gel electrophoresis in clinical studies. J Clin Diagn Res 10(1):DE01–DE04PubMedPubMedCentralGoogle Scholar
  100. Pavlic M, Griffiths MW (2009) Principles, applications, and limitations of automated ribotyping as a rapid method in food safety. Foodborne Pathog Dis 6(9):1047–1055CrossRefGoogle Scholar
  101. Pavón ABI, Maiden MC (2009) Multilocus sequence typing. Methods Mol Biol 551:129–140CrossRefPubMedPubMedCentralGoogle Scholar
  102. Presterl E, Nadrchal R, Winkler S, Makristathis A, Koller W, Rotter ML, Hirschl AM (1997) Molecular typing of Acinetobacter baumannii from ten different intensive care units of a university hospital. Eur J Clin Microbiol Infect Dis 16(10):740–743CrossRefGoogle Scholar
  103. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S (2018) CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog, 14(6):e1006990Google Scholar
  105. Ribot EM, Fitzgerald C, Kubota K, Swaminathan B, Barrett TJ (2001) Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J Clin Microbiol 39(5):1889–1894CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ripamonti C, Orenstein A, Kutty G, Huang L, Schuhegger R, Sing A, Fantoni G, Atzori C, Vinton C, Huber C, Conville PS (2009) Restriction fragment length polymorphism typing demonstrates substantial diversity among Pneumocystis jirovecii isolates. J Infect Dis 200(10):1616–1622CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rocco L, Ferrito V, Costagliola D, Marsilio A, Pappalardo AM, Stingo V, Tigano C (2007) Genetic divergence among and within four Italian populations of Aphanius fasciatus (Teleostei, Cyprinodontiformes). Ital J Zool 74(4):371–379CrossRefGoogle Scholar
  108. Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Invest Genet 4(1):22CrossRefGoogle Scholar
  109. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124CrossRefGoogle Scholar
  110. Salisbury SM, Sabatini LM, Spiegel CA (1997) Identification of methicillin-resistant staphylococci by multiplex polymerase chain reaction assay. Am Jo Clin Pathol 107(3):368–373CrossRefGoogle Scholar
  111. Sampaio JLM, Viana-Niero C, De Freitas D, Höfling-Lima AL, Leão SC (2006) Enterobacterial repetitive intergenic consensus PCR is a useful tool for typing Mycobacterium chelonae and Mycobacterium abscessus isolates. Diagn Microbiol Infect Dis 55(2):107–118CrossRefGoogle Scholar
  112. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  113. Savelkoul PHM, Aarts HJM, De Haas J, Dijkshoorn L, Duim B, Otsen M, Rademaker JLW, Schouls L, Lenstra JA (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37(10):3083–3091PubMedPubMedCentralGoogle Scholar
  114. Schürch AC, Siezen RJ (2010) Genomic tracing of epidemics and disease outbreaks. Microb Biotechnol 3(6):628–633CrossRefPubMedPubMedCentralGoogle Scholar
  115. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75CrossRefGoogle Scholar
  116. Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80(2):430–439CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sharma-Kuinkel BK, Rude TH, Fowler VG (2014) Pulse field gel electrophoresis. Methods Mol Biol 1373:117–130CrossRefGoogle Scholar
  118. Singh V, Rathore G, Kumar G, Swaminathan TR, Sood N, Kapoor D, Mishra BN (2007) Detection of the hole forming toxin hemolysin gene of Aeromonas hydrophila isolates. Indian Vet J 84:900–902Google Scholar
  119. Singh V, Rathore G, Kapoor D, Mishra BN, Lakra WS (2008a) Detection of aerolysin gene in Aeromonas hydrophila isolated from fish and pond water. Indian J Microbiol 48(4):453–458CrossRefGoogle Scholar
  120. Singh R, Tan SG, Panandam JM, Rahman RA, Cheah SC (2008b) Identification of cDNA-RFLP markers and their use for molecular mapping in oil palm (Elaeis guineensis). Asia Pac J Mol Biol Biotechnol 16(3):53–63Google Scholar
  121. Singh V, Chaudhary DK, Mani I, Somvanshi P, Rathore G, Sood N (2010a) Molecular identification and codon optimization analysis of major virulence encoding genes of Aeromonas hydrophila. Afr J Microbiol Res 4(10):952–957Google Scholar
  122. Singh V, Chaudhary DK, Mani I, Somvanshi P, Rathore G, Sood N (2010b) Genotyping of Aeromonas hydrophila by box elements. Microbiol 79(3):370–373CrossRefGoogle Scholar
  123. Singh V, Mani I, Chaudhary DK, Somvanshi P (2011) Molecular detection and cloning of thermostable hemolysin gene from Aeromonas hydrophila. Mol Biol 45(4):551–560CrossRefGoogle Scholar
  124. Singh V, Chaudhary DK, Mani I (2012a) Molecular characterization and modeling of secondary structure of 16S rRNA from Aeromonas veronii. Int J Appl Biol Pharm Technol 3(1):253–260Google Scholar
  125. Singh V, Mani I, Chaudhary DK (2012b) Molecular assessment of 16S-23S rDNA internal transcribed spacer length polymorphism of Aeromonas hydrophila. Adv Microbiol 2(2):72–78CrossRefGoogle Scholar
  126. Singh V, Braddick D, Dhar PK (2017) Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599:1–18CrossRefGoogle Scholar
  127. Singh V, Gohil N, Ramírez García R, Braddick D, Fofié CK (2018) Recent advances in CRISPR-Cas9 genome editing technology for biological and biomedical investigations. J Cell Biochem 119(1):81–94CrossRefGoogle Scholar
  128. Smouse PE, Chakraborty R (1986) The use of restriction fragment length polymorphisms in paternity analysis. Am J Hum Genet 38(6):918–939PubMedPubMedCentralGoogle Scholar
  129. Sola C, Abadia E, Le Hello S, Weill FX (2015) High-throughput CRISPR typing of Mycobacterium tuberculosis complex and Salmonella enterica serotype Typhimurium. Methods Mol Biol 1311:91–109CrossRefGoogle Scholar
  130. Steinmann KE, Hart CE, Thompson JF, Milos PM (2011) Helicos single-molecule sequencing of bacterial genomes. Methods Mol Biol 733:3–24CrossRefGoogle Scholar
  131. Stephenson DP, Moore RJ, Allison GE (2009) Comparison and utilisation of repetitive element PCR for typing Lactobacillus isolated from the chicken gastrointestinal tract. Appl Environ Microbiol 75(21):6764–6776CrossRefPubMedPubMedCentralGoogle Scholar
  132. Stêpniak E, Zagalska MM, Switonski M (2002) Use of RAPD technique in evolution studies of four species in the family Canidae. J Appl Genet 43(4):489–500PubMedPubMedCentralGoogle Scholar
  133. Stern MJ, Ames GFL, Smith NH, Robinson EC, Higgins CF (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37(3):1015–1026CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sullivan CB, Diggle MA, Clarke SC (2005) Multilocus sequence typing. Mol Biotechnol 29(3):245–254CrossRefPubMedPubMedCentralGoogle Scholar
  135. Sutton GG, White O, Adams MD, Kerlavage AR (1995) TIGR assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci Technol 1(1):9–19CrossRefGoogle Scholar
  136. Szczuka E, Kaznowski A (2004) Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus sequence PCR. J Clin Microbiol 42(1):220–228CrossRefPubMedPubMedCentralGoogle Scholar
  137. Tacão M, Alves A, Saavedra MJ, Correia A (2005) BOX-PCR is an adequate tool for typing Aeromonas spp. Antonie Leeuwenhoek 88(2):173–179CrossRefPubMedPubMedCentralGoogle Scholar
  138. Taylor JW, Fisher MC (2003) Fungal multilocus sequence typing—it’s not just for bacteria. Curr Opin Microbiol 6(4):351–356CrossRefPubMedPubMedCentralGoogle Scholar
  139. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12):2233–2238CrossRefGoogle Scholar
  140. Van Belkum A, Hermans PW (2001) BOX PCR fingerprinting for molecular typing of Streptococcus pneumoniae. Methods Mol Med 48:159–168PubMedPubMedCentralGoogle Scholar
  141. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74CrossRefPubMedPubMedCentralGoogle Scholar
  142. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res 19(24):6823–6831CrossRefPubMedPubMedCentralGoogle Scholar
  143. Versalovic J, Kapur V, Koeuth T, Mazurek GH, Whittam TS, Musser JM, Lupski JR (1995) DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch Pathol Lab Med 119(1):23–29PubMedGoogle Scholar
  144. Versalovic J, de Bruijn FJ, Lupski JR (1998) Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes. Springer, Boston, pp 437–454CrossRefGoogle Scholar
  145. Vila J, Marcos MA, De Anta MJ (1996) A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol 44(6):482–489CrossRefGoogle Scholar
  146. Wang X, Miller AB, Lepine AJ, Scott DJ, Murphy KE (1999) Analysis of randomly amplified polymorphic DNA (RAPD) for identifying genetic markers associated with canine hip dysplasia. J Hered 90(1):99–103CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wang G, Clark CG, Liu C, Pucknell C, Munro CK, Kruk TM, Caldeira R, Woodward DL, Rodgers FG (2003) Detection and characterization of the hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. J Clin Microbiol 41(3):1048–1054CrossRefPubMedPubMedCentralGoogle Scholar
  148. Wang LT, Lee FL, Tai CJ, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57(8):1846–1850CrossRefPubMedPubMedCentralGoogle Scholar
  149. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218CrossRefPubMedPubMedCentralGoogle Scholar
  150. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wilson LA, Sharp PM (2006) Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol Biol Evol 23(6):1156–1168CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wu F, Della-Latta P (2002) Molecular typing strategies. Semin Perinatol 26(5):357–366CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wu F, Della-Latta P (2006) Pulsed-field gel electrophoresis. In: Tang YW, Stratton CW (eds) Advanced techniques in diagnostic microbiology. Springer, Boston, pp 143–157CrossRefGoogle Scholar
  154. Wu S, Guo N, Yin Z, Chai J (1996) Characterization of pathogenic fungi genomes using pulsed field gel electrophoresis. Chinese Med Sci J 11(3):188–190Google Scholar
  155. Yang W, Kang X, Yang Q, Lin Y, Fang M (2013) Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biotechnol 4(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  156. Ye Y, Jiang Q, Wu Q, Zhang J, Lu J, Lin L (2012) The characterization and comparison of Staphylococcus aureus by antibiotic susceptibility testing, enterobacterial repetitive intergenic consensus–polymerase chain reaction, and random amplified polymorphic DNA–polymerase chain reaction. Foodborne Pathog Dis 9(2):168–171CrossRefPubMedPubMedCentralGoogle Scholar
  157. Zabeau M, Vos P (1993) Selective restriction fragment amplification:a general method for DNA fingerprinting. Publication 0 534 858 A1, bulletin 93/13. European Patent Office, Munich, GermanyGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nisarg Gohil
    • 1
  • Happy Panchasara
    • 1
  • Shreya Patel
    • 1
  • Vijai Singh
    • 1
    • 2
    Email author
  1. 1.School of Biological Sciences and BiotechnologyInstitute of Advanced ResearchGandhinagarIndia
  2. 2.Department of Biosciences, School of SciencesIndrashil UniversityGujaratIndia

Personalised recommendations