Microbial Genome Diversity and Microbial Genome Sequencing

  • Aditi Jangid
  • Tulika PrakashEmail author


The role of microbiome in agroecosystems has evolved due to improvements in microbial diversity analysis methods. The journey of microbial diversity estimation progressed from culture-dependent to culture-independent methods. The culture-dependent methods are important in finding the microbial diversity of different environments; however, they are immensely biased toward the dominant microorganisms present in a community. With the advancement in sequencing techniques and genomics, the community exploration using culture-independent methods has commenced a new understanding of microbial interactions with their surroundings. Molecular studies of different environmental communities have uncovered <1% of the total number of prokaryotic species representing the cultivable fraction. This chapter summarizes the different methods to acquire a microbial diversity that may eventually enhance plant growth in sustainable agriculture and may often play a role in the management of environmental problems. The merits and demerits of the commonly used molecular methods to investigate microbial communities are discussed. The potential applications of next-generation sequencing techniques for a comprehensive assessment of microbial diversity have been illustrated.


  1. Abubucker S et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  4. Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J (2016) High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56:394–404CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ashelford K et al (2011) Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol 12:R28CrossRefPubMedPubMedCentralGoogle Scholar
  8. Azam S et al (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bååth E, Díaz-Raviña M, Frostegård Å, Campbell CDJA (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245PubMedPubMedCentralGoogle Scholar
  10. Bae J-W et al (2005) Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835CrossRefPubMedPubMedCentralGoogle Scholar
  11. Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 35:133–140CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bartram A, Lynch M, Stearns J, Moreno-Hagelsieb G, Neufeld J (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol 77(11):3846–3852CrossRefPubMedPubMedCentralGoogle Scholar
  13. Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ (2017) Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun 8:14245CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53CrossRefPubMedPubMedCentralGoogle Scholar
  15. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653PubMedPubMedCentralGoogle Scholar
  16. Bowers J et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buggs RJ et al (2012) Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99:372–382CrossRefPubMedPubMedCentralGoogle Scholar
  18. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  19. Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley-Sayce, Chichester, pp 221–230Google Scholar
  20. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265CrossRefPubMedPubMedCentralGoogle Scholar
  21. Clegg CD, Ritz K, Griffiths BS (2000) % G+ C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Appl Soil Ecol 14:125–134CrossRefGoogle Scholar
  22. Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, NJ, pp 257–263CrossRefGoogle Scholar
  23. Cook H, Ussery DW (2013) Sigma factors in a thousand E. coli genomes. Environ Microbiol 15:3121–3129CrossRefPubMedPubMedCentralGoogle Scholar
  24. Derry A, Staddon W, Kevan P, Trevors J (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers Conserv 8:205–221CrossRefGoogle Scholar
  25. Deschamps S, Campbell MA (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570CrossRefGoogle Scholar
  26. Đokić L, Savić M, Narančić T, Vasiljević B (2010) Metagenomic analysis of soil microbial communities. Arch Biol Sci 62:559–564CrossRefGoogle Scholar
  27. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  29. El-Metwally S, Hamza T, Zakaria M, Helmy M (2013) Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol 9:e1003345CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fakruddin M, Mannan KSB (2012) Next generation sequencing technologies-principles and prospects. Res Rev Biosci 6:240–247Google Scholar
  31. Fakruddin M, Mannan K (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci 42Google Scholar
  32. Fisher MM, Triplett EWA (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636PubMedPubMedCentralGoogle Scholar
  33. Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fraser CM et al (1995) The minimal gene complement of mycoplasma genitalium. Science 270:397–404CrossRefPubMedPubMedCentralGoogle Scholar
  35. Galindo-González L, Pinzón-Latorre D, Bergen EA, Jensen DC, Deyholos MK (2015) Ion Torrent sequencing as a tool for mutation discovery in the flax (Linum usitatissimum L.) genome. Plant Methods 11:19CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ghazanfar S, Azim A, Ghazanfar MA, Anjum M, Begum I (2010) Metagenomics and its application in soil microbial community studies: biotechnological prospects. J Anim Plant Sci 6:611–622Google Scholar
  37. Giovannoni SJ, Britschgi TB, Moyer CL, Field KGJN (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60CrossRefPubMedPubMedCentralGoogle Scholar
  38. Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, Methé BA, Yooseph S (2010) METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics. Bioinformatics 26:2631–2632CrossRefPubMedPubMedCentralGoogle Scholar
  39. Goodfellow M, O’Donnell AG (1993) Handbook of new bacterial systematics. Academic Press, London/San DiegoGoogle Scholar
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedPubMedCentralGoogle Scholar
  41. Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219CrossRefPubMedPubMedCentralGoogle Scholar
  42. Guo J et al (2008) Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci 105:9145–9150CrossRefPubMedPubMedCentralGoogle Scholar
  43. Harpole W (2010) Neutral theory of species diversity. Nat Educ Knowl 3(10):60Google Scholar
  44. Harris TD et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109CrossRefPubMedPubMedCentralGoogle Scholar
  45. He R et al (2012) Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity. Am J Bot 99:232–247CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hill G et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36CrossRefGoogle Scholar
  47. Howorka S, Cheley S, Bayley H (2001) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19:636CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedPubMedCentralGoogle Scholar
  49. Huse SM, Welch DBM, Voorhis A, Shipunova A, Morrison HG, Eren AM, Sogin ML (2014) VAMPS: a website for visualization and analysis of microbial population structures. BMC bioinformatics 15:41CrossRefPubMedPubMedCentralGoogle Scholar
  50. Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome research: gr. 120618.120111Google Scholar
  51. Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot 99:383–396CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kauppinen J, Pelkonen J, Katila M-L (1994) RFLP analysis of Mycobacterium malmoense strains using ribosomal RNA gene probes: an addition tool to examine intraspecies variation. J Microbiol Methods 19:261–267CrossRefGoogle Scholar
  54. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lagesen K, Ussery DW, Wassenaar TM (2010) Genome update: the 1000th genome–a cautionary tale. Microbiology 156:603–608CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lagier J-C et al (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol:1Google Scholar
  57. Lai Z et al (2012) Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. Am J Bot 99:209–218CrossRefPubMedPubMedCentralGoogle Scholar
  58. Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241:1077–1080CrossRefPubMedPubMedCentralGoogle Scholar
  59. Langille MG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814CrossRefPubMedPubMedCentralGoogle Scholar
  60. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji Y, Akeson M (2010) Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc 132:17961–17972CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lingner T, Aßhauer KP, Schreiber F, Meinicke P (2011) CoMet—a web server for comparative functional profiling of metagenomes. Nucleic Acids Res 39:W518–W523CrossRefPubMedPubMedCentralGoogle Scholar
  63. Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedPubMedCentralGoogle Scholar
  64. MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang Y-J, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574PubMedPubMedCentralGoogle Scholar
  65. Markowitz VM et al (2011) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122CrossRefGoogle Scholar
  66. Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615CrossRefPubMedPubMedCentralGoogle Scholar
  67. Matsen FA, Evans SN (2013) Edge principal components and squash clustering: using the special structure of phylogenetic placement data for sample comparison. Plos ONE 8:e56859CrossRefPubMedPubMedCentralGoogle Scholar
  68. McKain MR et al (2012) Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot 99:397–406CrossRefPubMedPubMedCentralGoogle Scholar
  69. McKernan K, Blanchard A, Kotler L, Costa G (2016) Reagents, methods, and libraries for bead-based sequencing. Google PatentsGoogle Scholar
  70. Mende DR et al (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. Plos one 7:e31386CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science:1203980Google Scholar
  72. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31CrossRefGoogle Scholar
  73. Meyer F et al (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386CrossRefGoogle Scholar
  74. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. Plos one 8:e53608CrossRefPubMedPubMedCentralGoogle Scholar
  75. Moorthie S, Mattocks CJ, Wright CF (2011) Review of massively parallel DNA sequencing technologies. HUGO J 5:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  76. Morris CE, Monier J-M (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453CrossRefGoogle Scholar
  77. Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 60:871–879PubMedPubMedCentralGoogle Scholar
  78. Moyer CL, Tiedje JM, Dobbs FC, Karl DM (1996) A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl Environ Microbiol 62:2501–2507PubMedPubMedCentralGoogle Scholar
  79. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322CrossRefPubMedPubMedCentralGoogle Scholar
  80. Myllykangas S, Buenrostro J, Ji HP (2012) Overview of sequencing technology platforms. In: Bioinformatics for high throughput sequencing. Springer, Berlin, pp 11–25CrossRefGoogle Scholar
  81. Narisawa K, Hambleton S, Currah RS (2007) Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience 48:274–281CrossRefGoogle Scholar
  82. Naum M, Lampel KA (2011) Analytical methods | DNA-based assays. In: Fuquay JW, ed. Encyclopedia of dairy sciences, 2nd edn. Academic Press, San Diego pp 221–225Google Scholar
  83. NCBI (2018) National center for biotechnology information genome browser. Accessed 2018
  84. Nielsen HB et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822CrossRefPubMedPubMedCentralGoogle Scholar
  85. Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165CrossRefGoogle Scholar
  86. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC bioinformatics 12:385CrossRefPubMedPubMedCentralGoogle Scholar
  87. Orlando L et al (2011) True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res 21(10):1705–1719CrossRefPubMedPubMedCentralGoogle Scholar
  88. Orlewska K, Piotrowska-Seget Z, Cycon M (2018) Use of the PCR-DGGE Method for the Analysis of the Bacterial Community Structure in Soil Treated With the Cephalosporin Antibiotic Cefuroxime and/or Inoculated With a Multidrug-Resistant Pseudomonas putida Strain MC1. Front Microbiol 9:1387CrossRefPubMedPubMedCentralGoogle Scholar
  89. Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ozsolak F et al (2009) Direct RNA sequencing. Nature 461:814CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pop M (2009) Genome assembly reborn: recent computational challenges. Brief Bioinform 10:354–366CrossRefPubMedPubMedCentralGoogle Scholar
  93. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefPubMedPubMedCentralGoogle Scholar
  94. Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418PubMedPubMedCentralGoogle Scholar
  95. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365CrossRefPubMedPubMedCentralGoogle Scholar
  96. Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rudi K, Zimonja M, Trosvik P, Naes T (2007) Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 120:95–99CrossRefPubMedPubMedCentralGoogle Scholar
  98. Sarethy IP, Pan S, Danquah MK (2014) Modern taxonomy for microbial diversity. In: Biodiversity-The dynamic balance of the planet. InTech Open, LondonGoogle Scholar
  99. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310CrossRefPubMedPubMedCentralGoogle Scholar
  100. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5:e75CrossRefPubMedPubMedCentralGoogle Scholar
  101. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shulaev V et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109CrossRefPubMedPubMedCentralGoogle Scholar
  103. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sørheim R, Torsvik VL, Goksøyr J (1989) Phenotypical divergences between populations of soil bacteria isolated on different media. Microb Ecol 17:181–192CrossRefPubMedPubMedCentralGoogle Scholar
  105. Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J, Pires JC (2012) Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am J Bot 99:330–348CrossRefPubMedPubMedCentralGoogle Scholar
  106. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species1. Am J Bot 99:257–266CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176PubMedPubMedCentralGoogle Scholar
  108. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637CrossRefPubMedPubMedCentralGoogle Scholar
  109. Theron J, Cloete T (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57CrossRefPubMedPubMedCentralGoogle Scholar
  110. Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 92:7.10. 11–17.10. 14Google Scholar
  111. Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122CrossRefGoogle Scholar
  112. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178Google Scholar
  113. Torsvik V, Daae FL, Sandaa R-A, Øvreås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62CrossRefGoogle Scholar
  114. Trevors J (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101:45–67CrossRefGoogle Scholar
  115. Tyson GW et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37CrossRefPubMedPubMedCentralGoogle Scholar
  116. Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184CrossRefGoogle Scholar
  117. Van der Heijden MG et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69CrossRefGoogle Scholar
  118. von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  119. Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zalapa JE et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208CrossRefGoogle Scholar
  122. Zavala-Gonzalez EA et al (2017) Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytol 213:351–364CrossRefGoogle Scholar
  123. Zeyaullah M et al (2009) Metagenomics-An advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4:49–54Google Scholar
  124. Zhao L et al (2012) Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol 28:3039–3052CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of Technology (IIT)MandiIndia

Personalised recommendations