Advertisement

Polymeric Nanomedicine

  • Yu Zhao
  • Chunxiong Zheng
  • Yang LiuEmail author
Chapter

Abstract

Advances in the engineering of polymeric nanomaterials and their applications in nanomedicine are enabling new strategies that have great potential to help improve our understanding and treatment of brain diseases. Based on distinctive polymeric materials, nanomedicine has been developed to an impressive stage with the ability to perform targeted delivery with temporal and spatial control. In this chapter, the various polymeric nanoparticles by which therapeutics can be delivered into the brain are introduced, and some key challenges facing translation of the researches to bedside are highlighted.

Keywords

Polymeric nanomaterials Nanomedicine Brain diseases Targeted delivery Blood-brain barrier 

References

  1. 1.
    Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2(1):108–19.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298(2):274–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16(6):1503–11.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–65.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chun-Xiong Zheng YZ, Liu Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018;36:322–46.CrossRefGoogle Scholar
  9. 9.
    Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–78.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Koo YE, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259–69.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–41.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ou H, Cheng T, Zhang Y, Liu J, Ding Y, Zhen J, Shen W, Xu Y, Yang W, Niu P, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018;65:339–48.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen Y, Liang G. Enzymatic self-assembly of nanostructures for theranostics. Theranostics. 2012;2(2):139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Liu XM, Pramoda KP, Yang YY, Chow SY, He C. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials. 2004;25(13):2619–28.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509–17.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010;147(1):118–26.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Beliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324(3):1064–72.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol. 1992;71(1):3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, Yasuda J, Obata K, Kikuchi H, Ishida T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1-2):194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm. 2009;373(1-2):116–23.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Liu Y, Li J, Lu Y. Enzyme therapeutics for systemic detoxification[J]. Advanced drug delivery reviews. 2015;90:24–39.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Coombes AG, Scholes PD, Davies MC, Illum L, Davis SS. Resorbable polymeric microspheres for drug delivery–production and simultaneous surface modification using PEO-PPO surfactants. Biomaterials. 1994;15(9):673–80.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv. 2004;1(4):361–76.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond). 2012;7(8):1225–33.CrossRefGoogle Scholar
  28. 28.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56(6):1194–8.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yemisci M, Gursoy-Ozdemir Y, Caban S, Bodur E, Capan Y, Dalkara T. Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles. Methods Enzymol. 2012;508:253–69.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wang S, Jiang T, Ma M, Hu Y, Zhang J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm. 2010;386(1-2):249–55.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yi X, Manickam DS, Brynskikh A, Kabanov AV. Agile delivery of protein therapeutics to CNS. J Control Release. 2014;190:637–63.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhang X, Chen G, Wen L, Yang F, Shao AL, Li X, Long W, Mu L. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci. 2013;48(4-5):595–603.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 2010;74(2):157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hekmatara T, Gelperina S, Vogel V, Yang SR, Kreuter J. Encapsulation of water-insoluble drugs in poly(butyl cyanoacrylate) nanoparticles. J Nanosci Nanotechnol. 2009;9(8):5091–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R, Kreuter J, Gelperina S. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117(1):51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci. 1998;87(11):1305–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release. 2015;197:165–79.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem Soc Rev. 2011;40(7):3638–55.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang L, Liu Y, Liu G, et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research. 2016;9(8):2424–32.CrossRefGoogle Scholar
  45. 45.
    Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou ZH, Liu Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol. 2010;5(1):48–53.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liu C, Wen J, Meng Y, Zhang K, Zhu J, Ren Y, Qian X, Yuan X, Lu Y, Kang C. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv Mater. 2015;27(2):292–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dhanikula RS, Hammady T, Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. J Pharm Sci. 2009;98(10):3748–60.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul. 2009;26(4):287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm. 2013;10(1):249–60.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30(36):6976–85.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, Lou J, Jiang C, Pei Y. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab. 2009;29(12):1914–23.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb j. 2007;21(4):1117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Vinogradov SV. Nanogels in the race for drug delivery. Nanomedicine (Lond). 2010;5(2):165–8.CrossRefGoogle Scholar
  55. 55.
    Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Azadi A, Hamidi M, Rouini MR. Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: preparation and in vitro/in vivo characterization. Int J Biol Macromol. 2013;62:523–30.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem. 2004;15(1):50–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meyers CA, Lamborn KR, Prados MD. In reference to lamborn et Al. (Neuro-oncology. 2008;10:162–170). Neuro Oncol. 2008;10(6):1171–2.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 2004;5(4):209–18.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Pardridge WM. Non-invasive drug delivery to the human brain using endogenous blood-brain barrier transport systems. Pharm Sci Technolo Today. 1999;2(2):49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hekmatara T, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Matschke J, Gelperina S, Kreuter J, Glatzel M. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol. 2009;28(3):153–64.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28(33):4947–67.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Su JL, Lai KP, Chen CA, Yang CY, Chen PS, Chang CC, Chou CH, Hu CL, Kuo ML, Hsieh CY, et al. A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Res. 2005;65(11):4827–35.CrossRefGoogle Scholar
  65. 65.
    Wei Shi XC, Shi J, Chen J, Yi W. Overcoming the blood–brain barrier for glioma-targeted therapy based on an interleukin-6 receptor-mediated micelle system. RSC Adv. 2017;7:27162–9.CrossRefGoogle Scholar
  66. 66.
    Ksendzovsky A, Feinstein D, Zengou R, Sharp A, Polak P, Lichtor T, Glick RP. Investigation of immunosuppressive mechanisms in a mouse glioma model. J Neurooncol. 2009;93(1):107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, Chen J, Shen Y, Xiao Z, Weng J, et al. Traceable nanoparticles with dual targeting and ROS response for RNAi-based immunochemotherapy of intracranial Glioblastoma treatment. Adv Mater. 2018;30(18):e1705054.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wu Y, Fan Q, Zeng F, Zhu J, Chen J, Fan D, Li X, Duan W, Guo Q, Cao Z, et al. Peptide-functionalized nanoinhibitor restrains brain tumor growth by Abrogating Mesenchymal-Epithelial Transition factor (MET) signaling. Nano Lett. 2018;18:5488–98.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.CrossRefGoogle Scholar
  71. 71.
    Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76 Pt A:27–50.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Horwich AL. Molecular chaperones in cellular protein folding: the birth of a field. Cell. 2014;157(2):285–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Huang F, Wang J, Qu A, Shen L, Liu J, Liu J, Zhang Z, An Y, Shi L. Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew Chem Int Ed Engl. 2014;53(34):8985–90.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vonghia L, Leggio L, Ferrulli A, Bertini M, Gasbarrini G, Addolorato G. Acute alcohol intoxication. Eur J Intern Med. 2008;19(8):561–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Liu LJ, Wang W, Zhong Z, Lin S, Lu L, Wang YT, Ma DL, Leung CH. Inhibition of TLR1/2 dimerization by enantiomers of metal complexes. Chem Commun (Camb). 2016;52(83):12278–81.CrossRefGoogle Scholar
  76. 76.
    Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, et al. A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun. 2018;9(1):1802.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Brunden KR, Trojanowski JQ, Lee VM. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov. 2009;8(10):783–93.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Liu Y, An S, Li J, Kuang Y, He X, Guo Y, Ma H, Zhang Y, Ji B, Jiang C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials. 2016;80:33–45.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24(6):997–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke. 1983;14(6):924–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain. 2011;134(Pt 2):335–44.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Agyare EK, Jaruszewski KM, Curran GL, Rosenberg JT, Grant SC, Lowe VJ, Ramakrishnan S, Paravastu AK, Poduslo JF, Kandimalla KK. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release. 2014;185:121–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16(3):285–99.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun. 2009;23(1):55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol. 2006;147(Suppl 1):S287–96.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28(2):131–44.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Stocchi F. Continuous dopaminergic stimulation and novel formulations of dopamine agonists. J Neurol. 2011;258(Suppl 2):S316–22.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LK, Saxena PN, Arun J, Chaudhari BP, Patel DK, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–71.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564–74.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kurakhmaeva KB, Voronina TA, Kapica IG, Kreuter J, Nerobkova LN, Seredenin SB, Balabanian VY, Alyautdin RN. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bull Exp Biol Med. 2008;145(2):259–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, et al. Targeted brain delivery of Rabies Virus Glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian Mice. ACS Nano. 2018;12(5):4123–39.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Helmschrodt C, Hobel S, Schoniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A, Richter A, Richter F. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce alpha-Synuclein expression in a model of Parkinson’s disease. Mol Ther Nucleic Acids. 2017;9:57–68.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Reddy KS. Global burden of disease study 2015 provides GPS for global health 2030. Lancet. 2016;388(10053):1448–9.CrossRefGoogle Scholar
  97. 97.
    Corbyn Z. Statistics: a growing global burden. Nature. 2014;510(7506):S2–3.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877–903.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis. 2010;38(3):376–85.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739(1-2):88–96.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke. 2004;35(11 Suppl 1):2659–61.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Santos T, Maia J, Agasse F, Xapelli S, Ferreira L, Bernardino L. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr Biol (Camb). 2012;4(9):973–81.CrossRefGoogle Scholar
  103. 103.
    Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S, Vural A, Pinarbasli O, Capan Y, Fernandez-Megia E, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci. 2009;29(44):13761–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R, Fernandez-Megia E, Andrieux K, Couvreur P, Capan Y, et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab. 2015;35(3):469–75.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Panagiotou S, Saha S. Therapeutic benefits of nanoparticles in stroke. Front Neurosci. 2015;9:182.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lv W, Xu J, Wang X, Li X, Xu Q, Xin H. Bioengineered Boronic Ester modified Dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano. 2018;21:5417–26.CrossRefGoogle Scholar
  107. 107.
    Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–92.CrossRefGoogle Scholar
  108. 108.
    Brown C. Aetiology: neighbourhood watch. Nature. 2016;540(7631):S4–s6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Schmidt J, Metselaar JM, Wauben MH, Toyka KV, Storm G, Gold R. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126 Pt. 2003;8:1895–904.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations