Carbon-Based Nanomedicine

  • Peng Zhang
  • Ming Zhang
  • Jia GengEmail author


Carbon-based nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have been considered as excellent carriers for anti-cancer drugs because of their high drug-loading capability, nanoscale size, and high specific surface areas, enabling them to penetrate the mammalian cell membrane. Therefore, it’s meaningful to explore these carbon-based nanomaterials as versatile cancer drug carriers [1]. This chapter reviews the recent advances in carbon-based nanomedicine, including application, pharmacodynamics and metabolism, diagnosis and treatment, as well as biodistribution of carbon nanomaterials.


  1. 1.
    Lim D-J, Sim M, Oh L, Lim K, Park H. Carbon-based drug delivery carriers for cancer therapy. Arch Pharm Res. 2014;37(1):43–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E, Borowiak-Palena E. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett. 2009;478(4-6):200–5.CrossRefGoogle Scholar
  3. 3.
    Naderi N, Madani SY, Mosahebi A, Seifalian AM. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel. Nanotechnol Rev. 2015;6:28297.Google Scholar
  4. 4.
    Pan Q, Lv Y, Williams GR, Tao L, Yang H, Li H, Zhu L. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym. 2016;151:812–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials. 2014;35(13):4185–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang H, Ji Y, Chen Q, Jiao X, Hou L, Zhu X, Zhang Z. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J Drug Target. 2015;23(6):552–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537–44.CrossRefGoogle Scholar
  8. 8.
    Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Zhang Y, Yao S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B: Biointerfaces. 2011;84(1):206–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Yang X, Saeed LM, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine. 2011;6:1045–55.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hao Y, Xu P, He C, Yang X, Huang M, Xing J, Chen J. Impact of carbodiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery. Nanotechnology. 2011;22(28):285103.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Inoue Y, Fujimoto H, Ogino T, Iwata H. Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode. J R Soc Interface. 2008;5(25):909–18.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm. 2012;427(1):3–20.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Antonia Herrero M, Bianco A, Prato M, Kostarelos K, Pizzorusso T. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A. 2011;108(27):10952–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dong H, Ding L, Yan F, Ji H, Ju H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 2011;32(15):3875–82.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small. 2013;9(11):1989–97.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu X, Zhang Y, Ma D, Tang H, Tan L, Xie Q, Yao S. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B: Biointerfaces. 2013;111:224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nunes A, Amsharov N, Guo C, Van den Bossche J, Santhosh P, Karachalios TK, Nitodas SF, Burghard M, Kostarelos K, Al-Jamal KT. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small. 2010;6(20):2281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Corr SJ, Raoof M, Cisneros BT, Orbaek AW, Cheney MA, Law JJ, Lara NC, Barron AR, Wilson LJ, Curley SA. Radiofrequency electric-field heating behaviors of highly enriched semiconducting and metallic single-walled carbon nanotubes. Nano Res. 2015;8:2859–70.CrossRefGoogle Scholar
  19. 19.
    Santos T, Fang X, Chen M-T, Wang W, Ferreira R, Jhaveri N, Gundersen M, Zhou C, Pagnini P, Hofman FM, Chen TC. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol. 2014;4:180.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials. 2016;79:46–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou F, Wu S, Yuan Y, Chen WR, Xing D. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small. 2012;8(10):1543–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int J Nanomedicine. 2015;10:2347–62.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Battogtokh G, Ko YT. Graphene oxide-incorporated pH-responsive folate-albumin-photosensitizer nanocomplex as image-guided dual therapeutics. J Control Release. 2016;234:10–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Al Faraj A, Shaik AS, Al Sayed B, Halwani R, Al Jammaz I. Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine. 2016;11(1):31–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18(12):1841–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yi H, Ghosh D, Ham M-h, Qi J, Barone PW, Strano MS, Belcher AM. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012;12(3):1176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A. 2014;111(38):13948–53.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials. 2016;103:219–28.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kafa H, Wang JT-W, Rubio N, Klippstein R, Costa PM, Hassan HAFM, Sosabowski JK, Bansal SS, Preston JE, Joan Abbott N, Al-Jamala KT. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release. 2016;225:217–29.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhao D, Alizadeh D, Zhang L, Liu W, Farrukh O, Manuel E, Diamond DJ, Badie B. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res. 2011;17(4):771–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Xue X, Yang J-Y, He Y, Wang L-R, Liu P, Yu L-S, Bi G-H, Zhu M-M, Liu Y-Y, Xiang R-W, Yang X-T, Fan X-Y, Wang X-M, Qi J, Zhang H-J, Wei T, Cui W, Ge G-L, Xi Z-X, Wu C-F, Liang X-J. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol. 2016;11(7):613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang JT-W, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, Da Ros T, Sosabowski JK, Lawson AD, Robinson MK, Prato M, Bianco A, Festy F, Preston JE, Kostarelos K, Al-Jamala KT. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: spatial to ultra-structural analyses. J Control Release. 2016;224:22–32.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5(1):516–22.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Koromilas ND, Lainioti GC, Gialeli C, Barbouri D, Kouravelou KB, Karamanos NK, Voyiatzis GA, Kallitsis JK. Preparation and toxicological assessment of functionalized carbon nanotube-polymer hybrids. PLoS One. 2014;9(9):e107029.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Moore TL, Pitzer JE, Podila R, Wang X, Lewis RL, Grimes SW, Wilson JR, Skjervold E, Brown JM, Rao A, Alexis F. Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Part Part Syst Charact. 2013;30(4):365–73.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, Kostarelos K. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine. 2008;3(2):149–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Kostarelos K. Carbon nanotubes: Fibrillar pharmacology. Nat Mater. 2010;9(10):793–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitta MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci. 2010;107(27):12369–74.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci. 2006;103(9):3357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon-nanotube shape and individualization critical for renal excretion. Small. 2008;4(8):1130–2.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30(30):6041–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mo Y, Wang H, Liu J, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes. J Mater Chem B. 2015;3(9):1846–55.CrossRefGoogle Scholar
  44. 44.
    Meihua Tan J, Saifullah B, Umar Kura A, Fakurazi S, Hussein MZ. Incorporation of levodopa into biopolymer coatings based on carboxylated carbon nanotubes for pH-dependent sustained release drug delivery. Nanomaterials (Basel). 2018;8(6):pii: E389.CrossRefGoogle Scholar
  45. 45.
    Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–41.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano. 2009;3(2):307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Md N, Khatun Z, Reeck GR, Lee DY, Lee Y-k. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014;6(15):12413–21.CrossRefGoogle Scholar
  48. 48.
    Loader J, Montero D, Lorenzen C, Watts R, Méziat C, Reboul C, Stewart S, Walther G. Acute hyperglycemia impairs vascular function in healthy and cardiometabolic diseased subjects. Arterioscler Thromb Vasc Biol. 2015;35(9):2060–72.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Fabian RH, Derry PJ, Rea HC, Dalmeida WV, Nilewski LG, Sikkema WKA, Mandava P, Tsai A-L, Mendoza K, Berka V, Tour JM, Kent TA. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of reversible middle cerebral artery stroke in acutely hyperglycemic rats. Front Neurol. 2018;9:199.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Trusel M, Baldrighi M, Marotta R, Gatto F, Pesce M, Frasconi M, Catelani T, Papaleo F, Pompa PP, Tonini R, Giordani S. Internalization of carbon nano-onions by hippocampal cells preserves neuronal circuit function and recognition memory. ACS Appl Mater Interfaces. 2018;10(20):16952–63.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
  2. 2.School of Pharmaceutical Sciences, Guangzhou Higher Education Mega CenterSun Yat-sen UniversityGuangzhouChina

Personalised recommendations