Advertisement

Magnetic Nanomedicine

  • M. Zubair Iqbal
  • Gohar Ijaz Dar
  • Israt Ali
  • Aiguo WuEmail author
Chapter

Abstract

Nanotechnology emerged as a promising field of science with a diversity of applications in energy storage, biotechnology, medicine, sensing, and healthcare monitoring and in each aspect of nature. Owing to the significant characteristics of the smaller size, easy modification, and tunable physical and chemical properties, magnetic nanomaterials have gained potential fame in the nanomedicine field. In terms of treatment and diagnosis, magnetic nanoparticles (MNP) cannot be replaced with any other material. Surface functionalization and coating of ferromagnetic and superparamagnetic nanoparticles not only make them biocompatible but also effective for drug delivery and killing tumor cells. In this book chapter, we highlighted the emerging applications of magnetic nanoparticles, from synthesis to potential applications. Specifically, brief introduction of magnetic nanomaterials and their physical properties is discussed in detail. Further, the facile synthesis methods to prepare MNPs and recent developments in MNPs as magnetic hyperthermia agents, as a drug transporter, and use in magnetic resonance imaging as a contrast agents are also elaborated profoundly.

Keywords

Nanomaterials Magnetic nanoparticles Magnetic hyperthermia Drug delivery Magnetic resonance imaging 

Notes

Acknowledgments

The authors would like to thank the continuous support by National Key R&D Program of China (2018YFC0910601), Natural Science Foundation of China (U1432114 to Aiguo Wu and 81950410638 and 81650410654 to M. Zubair Iqbal), Zhejiang Province Financial Supporting (2017C03042, LY18H180011), and the Science & Technology Bureau of Ningbo City (2015B11002, 2017C110022). Furthermore, the authors also acknowledge Shanghai Synchrotron Radiation Facility at Line BL15U (No. h15 sr0021) used for X-ray fluorescence imaging and National Synchrotron Radiation Laboratory in Hefei used for soft X-ray imaging (No. 2016-HLS-PT-002193).

References

  1. 1.
    Baker JR, Quintana A, Piehler L, Banazak-Holl M, Tomalia D, Raczka E. The synthesis and testing of anti-Cancer therapeutic Nanodevices. Biomed Microdevices. 2001;3:61–9.CrossRefGoogle Scholar
  2. 2.
    Savage N, Thomas TA, Duncan JS. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program. J Environ Monit. 2007;9:1046–54.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Martin CR. Welcome to nanomedicine. Nanomedicine. 2006;1:5.CrossRefGoogle Scholar
  4. 4.
    Sonawane GH, Patil SP, Sonawane SH. Chapter 1 - Nanocomposites and its applications. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, editors. Applications of nanomaterials. Cambridge, UK: Woodhead Publishing; 2018. p. 1–22.Google Scholar
  5. 5.
    Rahman M, Rebrov E. Microreactors for gold nanoparticles synthesis: from faraday to flow. PRO. 2014;2:466.Google Scholar
  6. 6.
    Schoonman J. Nanostructured materials in solid state ionics. Solid State Ion. 2000;135:5–19.CrossRefGoogle Scholar
  7. 7.
    Rabia Riasat NG, Riasat Z, Aslam I, Sakeena M. Effects of nanoparticles on gastrointestinal disorders and therapy. J Clin Toxicol. 2014;6:10.Google Scholar
  8. 8.
    Iqbal MZ, Wang F, Zhao H, Rafique MY, Wang J, Li Q. Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries. Scr Mater. 2012;67:665–8.CrossRefGoogle Scholar
  9. 9.
    Iqbal MZ, Wang F, Feng T, Zhao H, Rafique MY, Rafi ud D, Farooq MH, Javed Q u a J, Khan DF. Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics. Mater Res Bull. 2012;47:3902–7.CrossRefGoogle Scholar
  10. 10.
    Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3–3.CrossRefGoogle Scholar
  11. 11.
    Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011;63:1361–70.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Reeves DB, Weaver JB. Approaches for modeling magnetic nanoparticle dynamics. Crit Rev Biomed Eng. 2014;42:85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gun’ko Y. Magnetic nanomaterials and their applications. Nano. 2014;4:505.Google Scholar
  14. 14.
    Al Lehyani SHA, Hassan R, Alharbi AA, Alomayri T, Alamri H. Magnetic hyperthermia using cobalt ferrite nanoparticles: the influence of particle size. Research Article. Int J Adv Tech. 2017;8:6.Google Scholar
  15. 15.
    Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167.CrossRefGoogle Scholar
  16. 16.
    Malekigorji M, Curtis ADM, Hoskins C. The use of iron oxide nanoparticles for pancreatic cancer therapy. J Nanomed Res. 2014;1:12.Google Scholar
  17. 17.
    Lee H, Shin T-H, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115:10690–724.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Masih D, Frank S, Joachim L, Nathalie R, Biplab S, Werner K, Heiko W. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys. 2012;45:195001.CrossRefGoogle Scholar
  20. 20.
    Kai W, Liang T, Diqing S, Jian-Ping W. Magnetic dynamics of ferrofluids: mathematical models and experimental investigations. J Phys D Appl Phys. 2017;50:085005.CrossRefGoogle Scholar
  21. 21.
    Kim T, Shima M. Reduced magnetization in magnetic oxide nanoparticles. J Appl Phys. 2007;101:09M516.CrossRefGoogle Scholar
  22. 22.
    Dutta P, Pal S, Seehra MS, Shah N, Huffman GP. Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J Appl Phys. 2009;105:07B501.CrossRefGoogle Scholar
  23. 23.
    Demortière A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Bégin-Colin S. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 2011;3:225–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Teja AS, Koh P-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater. 2009;55:22–45.CrossRefGoogle Scholar
  25. 25.
    Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.CrossRefGoogle Scholar
  26. 26.
    Mohammadzadeh A, Sadri M, Seyed Afghahi SS, Alizadeh Y, Najafian S, Hosseini H. In vitro biocompatibility of low and medium molecular weight chitosan–coated Fe3O4 nanoparticles. Nanomed Res J. 2017;2:250–9.Google Scholar
  27. 27.
    Atila Dinçer C, Yildiz N, Karakeçili A, Aydoğan N, Çalimli A. Synthesis and characterization of Fe3O4-MPTMS-PLGA nanocomposites for anticancer drug loading and release studies. Artif Cells Nanomed Biotechnol. 2017;45:1408–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeun M, Lee S, Kang JK, Tomitaka A, Kang KW, Kim YI, Takemura Y, Chung K-W, Kwak J, Bae S. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Appl Phys Lett. 2012;100:092406.CrossRefGoogle Scholar
  29. 29.
    Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine. 2012;7:4809–18.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS. Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl Surf Sci. 2017;423:641–74.CrossRefGoogle Scholar
  31. 31.
    Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;  https://doi.org/10.1016/j.arabjc.2017.05.011.CrossRefGoogle Scholar
  32. 32.
    Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small (Weinheim an der Bergstrasse, Germany). 2014;10:631–45.CrossRefGoogle Scholar
  33. 33.
    Annu, Ali A, Ahmed S. Green synthesis of metal, metal oxide nanoparticles, and their various applications. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer; 2018. p. 1–45.Google Scholar
  34. 34.
    Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2007;2:687.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric Supramolecules. Science. 2002;295:2407–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rawat RS. Dense plasma focus-from alternative fusion source to versatile high energy density plasma source for plasma nanotechnology. J Phys Conf Ser. 2015;591:25.CrossRefGoogle Scholar
  37. 37.
    Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287:1989–92.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals [J. Am. Chem. Soc. 2002, 124, 11480−11485]. J Am Chem Soc. 2002(124):13958.CrossRefGoogle Scholar
  39. 39.
    Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Armijo LM, Brandt YI, Mathew D, Yadav S, Maestas S, Rivera AC, Cook NC, Withers NJ, Smolyakov GA, Adolphi NL, Monson TC, Huber DL, Smyth HDC, Osiński M. Iron oxide nanocrystals for magnetic hyperthermia applications. Nano. 2012;2:134.Google Scholar
  41. 41.
    Grasset F, Labhsetwar N, Li D, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier J, Etourneau J. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite−silica Core−Shell nanoparticles. Langmuir. 2002;18:8209–16.CrossRefGoogle Scholar
  42. 42.
    Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform Iron Nanorods and Nanospheres. J Am Chem Soc. 2000;122:8581–2.CrossRefGoogle Scholar
  43. 43.
    Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: the case of cobalt. Science. 2001;291:2115–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metall Trans. 1970;1:2943–51.Google Scholar
  45. 45.
    Lukashev RV, Alekova AF, Korchagina SK, Chibirova FK. Mechanical processing of γ-Fe2O3. Inorg Mater. 2015;51:134–7.CrossRefGoogle Scholar
  46. 46.
    Arbain R, Othman M, Palaniandy S. Preparation of iron oxide nanoparticles by mechanical milling. Miner Eng. 2011;24:1–9.CrossRefGoogle Scholar
  47. 47.
    Chen C-N, Chen Y-L, Tseng WJ. Surfactant-assisted de-agglomeration of graphite nanoparticles by wet ball mixing. J Mater Process Technol. 2007;190:61–4.CrossRefGoogle Scholar
  48. 48.
    Jiang Y, Liu J, Suri PK, Kennedy G, Thadhani NN, Flannigan DJ, Wang J-P. Preparation of an α″-Fe16N2 magnet via a ball milling and shock compaction approach. Adv Eng Mat. 2016;18:1009–16.CrossRefGoogle Scholar
  49. 49.
    Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys. 2006;99:08E912.CrossRefGoogle Scholar
  50. 50.
    Yiping W, Yang L, Chuanbing R, Liu JP. Sm–co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18:465701.CrossRefGoogle Scholar
  51. 51.
    Kim EH, Lee HS, Kwak BK, Kim B-K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater. 2005;289:328–30.CrossRefGoogle Scholar
  52. 52.
    De Matteis L, Custardoy L, Fernández-Pacheco R, Magén C, de la Fuente JM, Marquina C, Ibarra MR. Ultrathin MgO coating of superparamagnetic magnetite nanoparticles by combined coprecipitation and sol–gel synthesis. Chem Mater. 2012;24:451–6.CrossRefGoogle Scholar
  53. 53.
    Xie C-Y, Meng S-X, Xue L-H, Bai R-X, Yang X, Wang Y, Qiu Z-P, Binks BP, Guo T, Meng T. Light and magnetic dual-responsive Pickering emulsion micro-reactors. Langmuir. 2017;33:14139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Salazar-Alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci. 2006;61:4625–33.CrossRefGoogle Scholar
  55. 55.
    Basak S, Chen D-R, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci. 2007;62:1263–8.CrossRefGoogle Scholar
  56. 56.
    Rasekh M, Ahmad Z, Cross R, Hernández-Gil J, Wilton-Ely JD, Miller PW. Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing. Mol Pharm. 2017;14:2010–23.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zhang Y, Yang Y, Duan H, Lü C. Mussel-inspired catechol-formaldehyde resin coated Fe3O4 Core-Shell magnetic Nanospheres: An effective catalyst support for highly active palladium nanoparticles. ACS Appl Mater Interfaces. 2018;10:44535.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 2017;11:2284–303.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater. 2007;19:1821–31.CrossRefGoogle Scholar
  60. 60.
    Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc. 2002;124:11480–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chen D, Zhang Y, Chen B, Kang Z. Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling. Ind Eng Chem Res. 2013;52:14179–84.CrossRefGoogle Scholar
  62. 62.
    Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314:274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z, Ruan H, Fan W, Lin L, Munasinghe J, Chen X, Wu A. Multifunctional Theranostic nanoparticles based on exceedingly small magnetic Iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11:10992–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Barrow M, Taylor A, García Carrión J, Mandal P, Park BK, Poptani H, Murray P, Rosseinsky MJ, Adams DJ. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media Mol Imaging. 2016;11:362–70.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sato T, Iijima T, Seki M, Inagaki N. Magnetic properties of ultrafine ferrite particles. J Magn Magn Mater. 1987;65:252–6.CrossRefGoogle Scholar
  66. 66.
    Berkowitz A, Schuele W, Flanders P. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J Appl Phys. 1968;39:1261–3.CrossRefGoogle Scholar
  67. 67.
    Morales M, Andres-Verges M, Veintemillas-Verdaguer S, Montero M, Serna C. Structural effects on the magnetic properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater. 1999;203:146–8.CrossRefGoogle Scholar
  68. 68.
    Coey JMD. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett. 1971;27:1140.CrossRefGoogle Scholar
  69. 69.
    Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124:8204–5.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.CrossRefGoogle Scholar
  71. 71.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse mfe 2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peng X, Wickham J, Alivisatos A. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc. 1998;120:5343–4.CrossRefGoogle Scholar
  73. 73.
    O’Brien S, Brus L, Murray CB. Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc. 2001;123:12085–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc. 2004;126:14583–99.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rockenberger J, Scher EC, Alivisatos AP. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc. 1999;121:11595–6.CrossRefGoogle Scholar
  76. 76.
    Samia AC, Hyzer K, Schlueter JA, Qin C-J, Jiang JS, Bader SD, Lin X-M. Ligand effect on the growth and the digestion of co nanocrystals. J Am Chem Soc. 2005;127:4126–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Li Y, Afzaal M, O’Brien P. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem. 2006;16:2175–80.CrossRefGoogle Scholar
  78. 78.
    Jana NR, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater. 2004;16:3931–5.CrossRefGoogle Scholar
  79. 79.
    Zeng H, Rice PM, Wang SX, Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J Am Chem Soc. 2004;126:11458–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Maity D, Ding J, Xue J-M. Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett. 2008;1:189–93.CrossRefGoogle Scholar
  81. 81.
    Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interf Sci. 1975;5:1–35.CrossRefGoogle Scholar
  82. 82.
    LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72:4847–54.CrossRefGoogle Scholar
  83. 83.
    Groult H, Poupard N, Herranz F, Conforto E, Bridiau N, Sannier F, Bordenave S, Piot J-M, Ruiz-Cabello J, Fruitier-Arnaudin I. Family of bioactive heparin-coated iron oxide nanoparticles with positive contrast in magnetic resonance imaging for specific biomedical applications. Biomacromolecules. 2017;18:3156–67.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci. 2011;2:118–40.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Huang K-W, Chieh J-J, Yeh C-K, Liao S-H, Lee Y-Y, Hsiao P-Y, Wei W-C, Yang H-C, Horng H-E. Ultrasound-induced magnetic imaging of tumors targeted by biofunctional magnetic nanoparticles. ACS Nano. 2017;11:3030–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85:315–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–54.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Iqbal MZ, Ma X, Chen T, Zhang L e, Ren W, Xiang L, Wu A. Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI). J Mater Chem B. 2015;3:5172–81.CrossRefGoogle Scholar
  90. 90.
    Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc. 2004;126:6164–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Wetz F, Soulantica K, Falqui A, Respaud M, Snoeck E, Chaudret B. Hybrid co–au nanorods: controlling au nucleation and location. Angew Chem Int Ed. 2007;46:7079–81.CrossRefGoogle Scholar
  92. 92.
    Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. Synthesis of hcp-co nanodisks. J Am Chem Soc. 2002;124:12874–80.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, Wang C. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull. 2006;41:2226–31.CrossRefGoogle Scholar
  94. 94.
    Zhu H, Yang D, Zhu L. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coat Technol. 2007;201:5870–4.CrossRefGoogle Scholar
  95. 95.
    Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater. 2005;285:296–302.CrossRefGoogle Scholar
  96. 96.
    Sobal NS, Hilgendorff M, Moehwald H, Giersig M, Spasova M, Radetic T, Farle M. Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system ag/co. Nano Lett. 2002;2:621–4.CrossRefGoogle Scholar
  97. 97.
    Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull. 1998;33:1015–21.CrossRefGoogle Scholar
  98. 98.
    Xuan S, Wang F, Wang Y-XJ, Jimmy CY, Leung KC-F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem. 2010;20:5086–94.CrossRefGoogle Scholar
  99. 99.
    Wu W, Wu Z, Yu T, Jiang C, Kim W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Xuan S, Wang Y-XJ, Yu JC, Cham-Fai Leung K. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater. 2009;21:5079–87.CrossRefGoogle Scholar
  101. 101.
    Kim J, Tran VT, Oh S, Kim C-S, Hong JC, Kim S, Joo Y-S, Mun S, Kim M-H, Jung J-W. Scalable Solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bio-separation and Theragnostic probes. ACS Appl Mater Interfaces. 2018;10:41935.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Jalajerdi R, Gholamian F, Shafie H, Moraveji A, Ghanbari D. Thermal and magnetic characteristics of cellulose acetate-Fe3O4. J Nanostruct. 2011;1:105–9.Google Scholar
  103. 103.
    Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe 2 O 4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng. 2015;32:903–10.CrossRefGoogle Scholar
  104. 104.
    Ghanbari D, Salavati-Niasari M, Sabet M. Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Compos Part B. 2013;45:550–5.CrossRefGoogle Scholar
  105. 105.
    Hedayati K, Goodarzi M, Ghanbari D. Hydrothermal synthesis of Fe3O4 nanoparticles and flame resistance magnetic poly styrene nanocomposite. J Nanostruct. 2017;7:32–9.Google Scholar
  106. 106.
    Li J, Pei Q, Wang R, Zhou Y, Zhang Z, Cao Q, Wang D, Mi W, Du Y. Enhanced photocatalytic performance through magnetic field boosting carrier transport. ACS Nano. 2018;12:3351–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kim J, Tran VT, Oh S, Kim C-S, Hong JC, Kim S, Joo Y-S, Mun S, Kim M-H, Jung J-W, Lee J, Kang YS, Koo J-W, Lee J. Scalable Solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bioseparation and Theragnostic probes. ACS Appl Mater Interfaces. 2018;10:41935–46.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    West JL, Halas NJ. Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotechnol. 2000;11:215–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Davis S. Biomedical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotechnol. 1997;15:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hussein AK. Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev. 2015;42:460–76.CrossRefGoogle Scholar
  111. 111.
    Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44:1346–78.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface. 2014;11:20130931.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.CrossRefGoogle Scholar
  114. 114.
    Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polym Int. 2007;56:821–6.CrossRefGoogle Scholar
  116. 116.
    Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, del Puerto Morales M, Miranda R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009;20:115103.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.CrossRefGoogle Scholar
  118. 118.
    Hugander A, Robins HI, Martin P, Schmitt C. Temperature distribution during radiant heat whole-body hyperthermia: experimental studies in the dog. Int J Hyperth. 1987;3:199–208.CrossRefGoogle Scholar
  119. 119.
    Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–35.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Chung S, Hoffmann A, Bader S, Liu C, Kay B, Makowski L, Chen L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett. 2004;85:2971–3.CrossRefGoogle Scholar
  121. 121.
    Kötitz R, Weitschies W, Trahms L, Brewer W, Semmler W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J Magn Magn Mater. 1999;194:62–8.CrossRefGoogle Scholar
  122. 122.
    Soukup D, Moise S, Céspedes E, Dobson J, Telling ND. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano. 2015;9:231–40.PubMedCrossRefGoogle Scholar
  123. 123.
    Dieckhoff J, Eberbeck D, Schilling M, Ludwig F. Magnetic-field dependence of Brownian and Néel relaxation times. J Appl Phys. 2016;119:043903.CrossRefGoogle Scholar
  124. 124.
    Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Qin S-Y, Zhang A-Q, Cheng S-X, Rong L, Zhang X-Z. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–47.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS, Sun J, Tan J, Dong J, Liang X-J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials. 2017;144:119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano. 2016;10:2436–46.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang Z, Wang J, Nie X, Wen T, Ji Y, Wu X, Zhao Y, Chen C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc. 2014;136:7317–26.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19:474–81.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res. 2015;48:1276–85.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Shi D, Sadat M, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale. 2015;7:8209–32.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zhou Q, Zhang B, Han D, Chen R, Qiu F, Wu J, Jiang H. Photo-responsive reversible assembly of gold nanoparticles coated with pillar [5] arenes. Chem Commun (Camb). 2015;51:3124–6.CrossRefGoogle Scholar
  134. 134.
    Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano. 2014;8:4705–19.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2014;354:163–72.CrossRefGoogle Scholar
  136. 136.
    Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2009;42:224001.CrossRefGoogle Scholar
  137. 137.
    Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–96.CrossRefGoogle Scholar
  138. 138.
    Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:1.CrossRefGoogle Scholar
  139. 139.
    Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.CrossRefGoogle Scholar
  140. 140.
    Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F. Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: iocalization of the magnetism by element selective techniques. Nano Lett. 2008;8:661–7.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Brezovich IA. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med Phys Mono. 1988;16:82–111.Google Scholar
  142. 142.
    Dennis C, Jackson A, Borchers J, Hoopes P, Strawbridge R, Foreman A, Van Lierop J, Grüttner C, Ivkov R. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20:395103.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Chatterjee J, Bettge M, Haik Y, Chen CJ. Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J Magn Magn Mater. 2005;293:303–9.CrossRefGoogle Scholar
  144. 144.
    Das R, Rinaldi-Montes N, Alonso J, Amghouz Z, Garaio E, García J, Gorria P, Blanco J, Phan M, Srikanth H. Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl Mater Interfaces. 2016;8:25162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Jiang Q, Zheng S, Hong R, Deng S, Guo L, Hu R, Gao B, Huang M, Cheng L, Liu G. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci. 2014;307:224–33.CrossRefGoogle Scholar
  146. 146.
    Parchur AK, Sharma G, Jagtap JM, Gogineni VR, LaViolette PS, Flister MJ, White SB, Joshi A. Vascular interventional radiology-guided Photothermal therapy of colorectal Cancer liver metastasis with Theranostic gold Nanorods. ACS Nano. 2018;12:6597–611.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Han X, Huang J, Jing X, Yang D, Lin H, Wang Z, Li P, Chen Y. Oxygen-deficient Black Titania for synergistic/enhanced Sonodynamic and Photoinduced Cancer therapy at near infrared-II biowindow. ACS Nano. 2018;12:4545–55.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Saeed M, Iqbal MZ, Ren W, Xia Y, Liu C, Khan WS, Wu A. Controllable synthesis of Fe 3 O 4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO 2. J Mater Chem B. 2018;6:3800–10.CrossRefGoogle Scholar
  149. 149.
    Gangopadhyay P, Gallet S, Franz E, Persoons A, Verbiest T. Novel superparamagnetic core (shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. IEEE Trans Magn. 2005;41:4194–6.CrossRefGoogle Scholar
  150. 150.
    Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO Core–Shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater. 2012;22:3737–44.CrossRefGoogle Scholar
  151. 151.
    Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X. Sub-10 nm Fe3O4@ Cu2–x S Core–Shell nanoparticles for dual-modal imaging and Photothermal therapy. J Am Chem Soc. 2013;135:8571–7.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Tang J, Zhou H, Liu J, Liu J, Li W, Wang Y, Hu F, Huo Q, Li J, Liu Y. Dual-mode imaging-guided synergistic chemo-and magnetohyperthermia therapy in a versatile nanoplatform to eliminate cancer stem cells. ACS Appl Mater Interfaces. 2017;9:23497–507.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clement O, Silva AK, Menager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–16.PubMedCrossRefGoogle Scholar
  154. 154.
    Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R198.CrossRefGoogle Scholar
  155. 155.
    Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C. 2015;119:28148–54.CrossRefGoogle Scholar
  156. 156.
    Georgiadou V, Tangoulis V, Arvanitidis I, Kalogirou O, Dendrinou-Samara C. Unveiling the physicochemical features of CoFe2O4 nanoparticles synthesized via a variant hydrothermal method: NMR relaxometric properties. J Phys Chem C. 2015;119:8336–48.CrossRefGoogle Scholar
  157. 157.
    Kotoulas A, Dendrinou-Samara C, Sarafidis C, Kehagias T, Arvanitidis J, Vourlias G, Angelakeris M, Kalogirou O. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency. J Nanopart Res. 2017;19:399.CrossRefGoogle Scholar
  158. 158.
    Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–96.CrossRefGoogle Scholar
  159. 159.
    Chen X, Klingeler R d, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E. Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces. 2012;4:2303–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011;63:141–63.PubMedCrossRefGoogle Scholar
  161. 161.
    Zuo X, Wu C, Zhang W, Gao W. Magnetic carbon nanotubes for self-regulating temperature hyperthermia. RSC Adv. 2018;8:11997–2003.CrossRefGoogle Scholar
  162. 162.
    Widder KJ, Senyei AE, Scarpelli DG. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med. 1978;158:141–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Zhe Liu FK, Gätjens J. Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater. 2010;2010:15.Google Scholar
  164. 164.
    Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv. 2017;8:947–56.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Saadeh Y, Vyas D. Nanorobotic applications in medicine: current proposals and designs. Am J Robot Surg. 2014;1:4–11.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Almalik A, Benabdelkamel H, Masood A, Alanazi IO, Alradwan I, Majrashi MA, Alfadda AA, Alghamdi WM, Alrabiah H, Tirelli N. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein Corona. Sci Rep. 2017;7:10542.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Martens TF, Remaut K, Deschout H, Engbersen JF, Hennink WE, Van Steenbergen MJ, Demeester J, De Smedt SC, Braeckmans K. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci. 2013;110:10753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Müller J, Bauer KN, Prozeller D, Simon J, Mailänder V, Wurm FR, Winzen S, Landfester K. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials. 2017;115:1–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23:619–26.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater. 2016;2016:20.Google Scholar
  176. 176.
    Kumari A, Kumar V, Yadav S. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012;7:34–42.CrossRefGoogle Scholar
  177. 177.
    Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.CrossRefGoogle Scholar
  178. 178.
    Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B. 2018;6:510–7.CrossRefGoogle Scholar
  179. 179.
    Al-Ahmady Z, Kostarelos K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev. 2016;116:3883–918.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Zhang Z, Zhang D, Wei L, Wang X, Xu Y, Li H-W, Ma M, Chen B, Xiao L. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for cellular imaging and controlled releasing of drug to living cells. Colloids Surf B: Biointerfaces. 2017;159:905–12.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Bai Y, Xie F-Y, Tian W. Controlled self-assembly of Thermo-responsive amphiphilic H-shaped polymer for adjustable drug release. Chin J Polym Sci. 2018;36:406–16.CrossRefGoogle Scholar
  182. 182.
    Anirudhan T, Nair AS. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. J Mater Chem B. 2018;6:428–39.CrossRefGoogle Scholar
  183. 183.
    Mathiyazhakan M, Wiraja C, Xu C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 2018;10:10.CrossRefGoogle Scholar
  184. 184.
    Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6:11553–73.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018;272:145–58.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Ma G, Lin W, Yuan Z, Wu J, Qian H, Xu L, Chen S. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed L-glutamic acid and L-lysine polypeptide for site-specific drug delivery. J Mater Chem B. 2017;5:935–43.CrossRefGoogle Scholar
  187. 187.
    Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan J, Phan M-H. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys. 2016;119:083904.CrossRefGoogle Scholar
  188. 188.
    Grillo R, Gallo J, Stroppa DG, Carbó-Argibay E, Lima R, Fraceto LF, Bañobre-López M. Sub-micrometer magnetic nanocomposites: insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces. 2016;8:25777–87.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116:5338–431.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Chen C-W, Syu W-J, Huang T-C, Lee Y-C, Hsiao J-K, Huang K-Y, Yu H-P, Liao M-Y, Lai P-S. Encapsulation of au/Fe 3 O 4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding. J Mater Chem B. 2017;5:5774–82.CrossRefGoogle Scholar
  191. 191.
    Wu W, Jiang CZ, Roy VA. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale. 2016;8:19421–74.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol. 2011;45:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine. 2018;13:953–71.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449–70.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Gao Z, Li Y, You C, Sun K, An P, Sun C, Wang M, Zhu X, Sun B. Iron oxide nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly increased toxic reactive oxygen species generation. ACS Appl Bio Mater. 2018;1:270–80.CrossRefGoogle Scholar
  197. 197.
    Kosmas C, Muñoz Estrella A, Sourlas A, Silverio D, Hilario E, Montan P, Guzman E. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018;6:63.PubMedCentralCrossRefGoogle Scholar
  198. 198.
    Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV, Dudanov IP, Shtil AA, Bel’tyukov PP, Shibeko AM, Koltsova EM, Nechipurenko DY. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation. ACS Appl Mater Interfaces. 2018;10:36764–75.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Hsiao M-H, Mu Q, Stephen ZR, Fang C, Zhang M. Hexanoyl-chitosan-PEG copolymer coated iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett. 2015;4:403–7.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Clary L, Verderone G, Santaella C, Vierling P. Membrane permeability and stability of liposomes made from highly fluorinated double-chain phosphocholines derived from diaminopropanol, serine or ethanolamine. Biochim Biophys Acta Biomembr. 1997;1328:55–64.CrossRefGoogle Scholar
  201. 201.
    Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 1982;42:4734–9.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release. 2003;91:417–29.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for Cancer treatment. Mol Pharm. 1791-1799;2018:15.Google Scholar
  204. 204.
    Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale. 2013;5:5167–79.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Gillies RJ, Bhujwalla ZM, Evelhoch J, Garwood M, Neeman M, Robinson SP, Sotak CH, Van Der Sanden B. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia (New York, NY). 2000;2:139–51.CrossRefGoogle Scholar
  206. 206.
    Furman-Haran E, Schechtman E, Kelcz F, Kirshenbaum K, Degani H. Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions. Cancer. 2005;104:708–18.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Bowtell R. Colourful future for MRI. Nature. 2008;453:993.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E. Magnetic nanoparticle design for medical applications. Prog Solid State Chem. 2006;34:237–47.CrossRefGoogle Scholar
  209. 209.
    Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging. 2008;27:941–54.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer. Mol Bio Syst. 2009;5:1279–91.Google Scholar
  211. 211.
    Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem. 2008;8:1180–6.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Bouzigues C, Gacoin T, Alexandrou A. Biological applications of rare-earth based nanoparticles. ACS Nano. 2011;5:8488–505.PubMedCrossRefGoogle Scholar
  213. 213.
    Hanaoka K. Development of responsive lanthanide-based magnetic resonance imaging and luminescent probes for biological applications. Chem Pharm Bull. 2010;58:1283–94.PubMedCrossRefGoogle Scholar
  214. 214.
    Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21:2133–48.CrossRefGoogle Scholar
  215. 215.
    Ivanuša T, Beravs K, Medič J, Serša I, Serša G, Jevtič V, Demsar F, Mikac U. Dynamic contrast enhanced MRI of mouse fibrosarcoma using small-molecular and novel macromolecular contrast agents. Phys Med. 2007;23:85–90.PubMedCrossRefGoogle Scholar
  216. 216.
    Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110:3019–42.PubMedCrossRefGoogle Scholar
  217. 217.
    Ripoll J, Ntziachristos V, Cannet C, Babin AL, Kneuer R, Gremlich H-U, Beckmann N. Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs RD. 2008;9:277–306.CrossRefGoogle Scholar
  218. 218.
    Reilly RF. Risk for nephrogenic systemic fibrosis with gadoteridol (pro Hance) in patients who are on long-term hemodialysis. Clin J Am Soc Nephrol CJASN. 2008;3:747–51.PubMedCrossRefGoogle Scholar
  219. 219.
    Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:31.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60:1241–51.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Lawaczeck R, Menzel M, Pietsch H. Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem. 2004;18:506–13.CrossRefGoogle Scholar
  222. 222.
    Hu S-H, Gao X. Nanocomposites with spatially separated functionalities for combined imaging and Magnetolytic therapy. J Am Chem Soc. 2010;132:7234–7.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Jun Y-w, Choi J-s, Cheon J. Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun. 2007:1203–14.Google Scholar
  224. 224.
    Fulton DA, O’Halloran M, Parker D, Senanayake K, Botta M, Aime S. Efficient relaxivity enhancement in dendritic gadolinium complexes: effective motional coupling in medium molecular weight conjugates. Chem Commun. 2005:474–6.Google Scholar
  225. 225.
    Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, Reddy R, Marincola FM. Molecular magnetic resonance imaging in cancer. J Transl Med. 2015;13:313.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1  https://doi.org/10.3402/nano.v3401i3400.5358.
  227. 227.
    Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Lin MM, Kim DK, Haj AJE, Dobson J. Development of Superparamagnetic Iron Oxide Nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nano Biosci. 2008;7:298–305.CrossRefGoogle Scholar
  229. 229.
    Nathan J, Wittenberg CLH. Using nanoparticles to push the limits of detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:237–54.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. Zubair Iqbal
    • 1
    • 2
  • Gohar Ijaz Dar
    • 2
  • Israt Ali
    • 3
  • Aiguo Wu
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  3. 3.Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations