Advertisement

Introduction: Nanomedicine in the Brain

  • Tian-Qi Li
  • Li-Wen Huang
  • Xue XueEmail author
Chapter

Abstract

In recent years, as the incidence of brain diseases in the population has gradually increased, the treatment of neuropsychiatric diseases cannot be ignored. There are many pathogenesis of neuropsychiatric diseases, such as neuronal damage, intercellular signaling disorder, and inflammatory reactions. On the other hand, blood-brain barrier (BBB) as the protective layer of the brain, to some extent, hinders the release and delivery of conventional drugs. Nanomedicines, with many excellent physiochemical properties, such as multiple modifications and surface functionalization, have attracted widespread attentions in the scientific community. In this chapter, we provide a broad overview of brain diseases and summarize the applications of nanomedicine in neuropsychiatric disorders, as well as challenges and prospects for future research. We hope that this chapter will enable readers to have a new understanding of brain diseases and nanomedicine and to promote the developments of nanomedicine in brain diseases in clinic.

Keywords

Nanomaterials Nanomedicine Neuropsychiatric disease Neurological disease Psychiatric disease 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (31771031 and 81701829), and the National Key Research and Development Program of China (2018YFA0209800).

References

  1. 1.
    Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology. 2018;153:399–414.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19(4):215–34.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine. 2018;13:2341–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45:687–97.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomed. 2018;13:5561–76.CrossRefGoogle Scholar
  7. 7.
    Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64:1363–84.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials. 2018;155:217–35.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev. 2018;138:133–47.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat mater. 2013;12:991–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Qian CG, Chen YL, Feng PJ, Xiao XZ, Dong M, Yu JC, et al. Conjugated polymer nanomaterials for theranostics. Acta Pharmacol Sin. 2017;38:764–81.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liu TM, Conde J, Lipiński T, Bednarkiewicz A, Huang CC. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016;8:e295.CrossRefGoogle Scholar
  13. 13.
    Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol. 2008;3:139–43.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater. 2017;2:16093.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012;336:604–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yang SY, Chiu MJ, Lin CH, Horng HE, Yang CC, Chieh JJ, et al. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnol. 2016;14:41.CrossRefGoogle Scholar
  17. 17.
    Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker’s guide to voltammetry: Acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8:221–34.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Liu TC, Chuang MC, Chu CY, Huang WC, Lai HY, Wang CT, et al. Implantable graphene-based neural electrode interfaces for electrophysiology and neurochemistry in in vivo hyperacute stroke model. ACS Appl Mater Interfaces. 2016;8:187–96.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hu X, Wei H, Liu J, Zhang J, Chi X, Jiang P, et al. Nanoenvelopes: Wrapping a single-walled carbon nanotube with graphene using an atomic force microscope. Adv Mater. 2018:e1804918.  https://doi.org/10.1002/adma.201804918.CrossRefGoogle Scholar
  20. 20.
    Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano. 2015;9:4465–74.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Xue X, Wang LR, Sato Y, Jiang Y, Berg M, Yang DS, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett. 2014;14:5110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Xue X, Yang JY, He Y, Wang LR, Liu P, Yu LS, et al. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol. 2016;11:613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Sci Rep. 2012;2:492.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun. 2013;4:2326.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kwiatkowski G, Jahnig F, Steinhauser J, Wespi P, Ernst M, Kozerke S. Nanometer size silicon particles for hyperpolarized MRI. Sci Rep. 2017;7:7946.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release. 2016;233:64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Parameswaran R, Carvalho-de-Souza JL, Jiang Y, Burke MJ, Zimmerman JF, Koehler K, et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat Nanotechnol. 2018;13:260–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li W, Li Y, Liu Z, Kerdsakundee N, Zhang M, Zhang F, et al. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials. 2018;185:322–32.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22  https://doi.org/10.3390/molecules22020277.PubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol. 2018;55:145–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao YZ, Li X, Lu CT, Lin M, Chen LJ, Xiang Q, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine. 2014;10:755–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016;13:1121–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Tokatlian T, Kulp DW, Mutafyan AA, Jones CA, Menis S, Georgeson E, et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci Rep. 2018;8:16527.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett. 2018;13:231.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chung GY, Shim KH, Kim HJ, Min SK, Shin HS. Chitosan-coated C-phycocyanin liposome for extending the neuroprotective time window against ischemic brain stroke. Curr Pharm Des. 2018;24:1859–64.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, et al. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomed. 2014;9:3623–30.Google Scholar
  37. 37.
    Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci. 2016;7:1658–70.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lu YM, Huang JY, Wang H, Lou XF, Liao MH, Hong LJ, et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials. 2014;35:530–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kamp F, Scheidt HA, Winkler E, Basset G, Heinel H, Hutchison JM, et al. Bexarotene binds to the amyloid precursor protein transmembrane domain, alters its alpha-helical conformation, and inhibits gamma-secretase nonselectively in liposomes. ACS Chem Neurosci. 2018;9:1702–13.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, et al. Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21:1622–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Guan Y, Li M, Dong K, Gao N, Ren J, Zheng Y, et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-beta peptide. Biomaterials. 2016;98:92–102.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10:2860–70.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wahba SM, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer’s disease in ovariectomized albino-rat model. Mater Sci Eng C. 2016;65:151–63.CrossRefGoogle Scholar
  44. 44.
    Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun. 2018;9:2415.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10:924–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359:679–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Feng W, Zhu X, Li F. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 2013;5:e75.CrossRefGoogle Scholar
  48. 48.
    Lv R, Yang P, Chen G, Gai S, Xu J, Prasad PN. Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Sci Rep. 2017;7:13562.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jin D, Xi P, Wang B, Zhang L, Enderlein J, van Oijen AM. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods. 2018;15:415–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Warburton RJ. Single spins in self-assembled quantum dots. Nat Mater. 2013;12:483–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol. 2013;4:140.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, et al. In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials. 2014;35:4627–35.PubMedCrossRefGoogle Scholar
  53. 53.
    He J, Yang H, Zhang Y, Yu J, Miao L, Song Y, et al. Smart nanocomposites of Cu-hemin metal-organic frameworks for electrochemical glucose biosensing. Sci Rep. 2016;6:36637.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Commun. 2017;8:2075.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chen H, Wang J, Shan D, Chen J, Zhang S, Lu X. Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging. Anal Chem. 2018;90:7056–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang J, Fan Y, Tan Y, Zhao X, Zhang Y, Cheng C, et al. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-beta peptide. ACS Appl Mater Interfaces. 2018;10:36615–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater. 2011;23:H79–83.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pourcin F, Reynaud C, Carlberg M, Le Rouzo J, Duche D, Simon JJ, et al. Plasmonic nanocomposites based on silver nanocube-polymer blends displaying Nearly Perfect Absorption in the UV region. Langmuir. 2018;  https://doi.org/10.1021/acs.langmuir.8b03003.CrossRefGoogle Scholar
  59. 59.
    Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials. 2012;33:7435–46.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Okamoto S, Yoshii H, Matsuura M, Kojima A, Ishikawa T, Akagi T, et al. Poly-gamma-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus-like particles provide effective protection from Japanese encephalitis virus. Clin Vaccine Immunol. 2012;19:17–22.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Piazza J, Hoare T, Molinaro L, Terpstra K, Bhandari J, Selvaganapathy PR, et al. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm. 2014;87:30–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Sun B, Sun MJ, Gu Z, Shen QD, Jiang SJ, Xu Y, et al. Conjugated polymer fluorescence probe for intracellular imaging of magnetic nanoparticles. Macromolecules. 2010;43:10348–54.CrossRefGoogle Scholar
  63. 63.
    Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64:1394–416.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen XY, Gambhlr SS, Cheon J. Theranostic nanomedicine. Acc Chem Res. 2011;44:841.PubMedCrossRefGoogle Scholar
  65. 65.
    Barks A, Hall AM, Tran PV, Georgieff MK. Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr Res. 2018;  https://doi.org/10.1038/s41390-018-0204-8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21:1300–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lago SG, Tomasik J, van Rees GF, Ramsey JM, Haenisch F, Cooper JD, et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol Psychiatry. 2018;  https://doi.org/10.1038/s41380-018-0123-4.
  69. 69.
    Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: Synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnol. 2018;16:87.CrossRefGoogle Scholar
  70. 70.
    Kaushik AC, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep. 2018;8:9169.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New Engl J Med. 2012;367:795–804.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mann AP, Scodeller P, Hussain S, Braun GB, Molder T, Toome K, et al. Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nat Commun. 2017;8:1403.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Eitan E, Hutchison ER, Marosi K, Comotto J, Mustapic M, Nigam SM, et al. Extracellular vesicle-associated abeta mediates trans-neuronal bioenergetic and Ca(2+)-handling deficits in Alzheimer’s disease models. NPJ Aging Mech Dis. 2016;2016:2.Google Scholar
  74. 74.
    Zhang M, Mao X, Yu Y, Wang CX, Yang YL, Wang C. Nanomaterials for reducing amyloid cytotoxicity. Adv Mater. 2013;25:3780–801.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Shao X, Ma W, Xie X, Li Q, Lin S, Zhang T, et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl Mater Interfaces. 2018;10:23682–92.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano. 2014;8:76–103.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389:207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tang M, Pi J, Long Y, Huang N, Cheng Y, Zheng H. Quantum dots-based sandwich immunoassay for sensitive detection of Alzheimer’s disease-related Abeta1-42. Spectrochim Acta Part A, Mol Biomol Spectrosc. 2018;201:82–7.CrossRefGoogle Scholar
  80. 80.
    Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, et al. A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun. 2018;9:1802.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, et al. Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep. 2017;7:7328.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ruggeri FS, Mahul-Mellier AL, Kasas S, Lashuel HA, Longo G, Dietler G. Amyloid single-cell cytotoxicity assays by nanomotion detection. Cell Death Dis. 2017;3:17053.CrossRefGoogle Scholar
  83. 83.
    Atashrazm F, Hammond D, Perera G, Dobson-Stone C, Mueller N, Pickford R, et al. Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci Rep. 2018;8:15446.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S. ZnO nanowire arrays on 3D hierachical graphene foam: Biomarker detection of Parkinson’s disease. ACS Nano. 2014;8:1639–46.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomed. 2013;8:1103–10.CrossRefGoogle Scholar
  86. 86.
    Liu Y, Guo Y, An S, Kuang Y, He X, Ma H. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson’s disease. PLoS One. 2013;8:e62905.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ma W, Qin LX, Liu FT, Gu Z, Wang J, Pan ZG. Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Sci Rep. 2013;3:1537.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Niu S, Zhang LK, Zhang L, Zhuang S, Zhan X, Chen WY. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics. 2017;7:344–56.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nih LR, Sideris E, Carmichael ST, Segura T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv Mater. 2017;29  https://doi.org/10.1002/adma.201606471.CrossRefGoogle Scholar
  90. 90.
    Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat Mater. 2018;17:642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: Perspectives. Stroke. 2013;44:2351–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Machado-Pereira M, Santos T, Ferreira L, Bernardino L, Ferreira R. Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neurosci Lett. 2018;673:116–21.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gao Y, Chen X, Liu H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia. J Photochem Photobiol B. 2018;187:184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zhang T, Li CY, Jia JJ, Chi JS, Zhou D, Li JZ. Combination therapy with LXW7 and ceria nanoparticles protects against acute cerebral ischemia/reperfusion injury in rats. Curr Med Sci. 2018;38:144–52.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Manickam DS, Brynskikh AM, Kopanic JL, Sorgen PL, Klyachko NL, Batrakova EV. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J Control Release. 2012;162:636–45.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zabow G, Dodd SJ, Koretsky AP. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature. 2015;520:73–7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Li M, Liu Y, Chen J, Liu T, Gu Z, Zhang J. Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics. 2018;8:4870–83.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Huq R, Samuel EL, Sikkema WK, Nilewski LG, Lee T, Tanner MR. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci Rep. 2016;6:33808.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Poser CM. Multiple sclerosis trait: The premorbid stage of multiple sclerosis. A hypothesis. Acta Neurol Scand. 2004;109:239–43.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tysiak E, Asbach P, Aktas O, Waiczies H, Smyth M, Schnorr J. Beyond blood brain barrier breakdown – In vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflamm. 2009;6:20.CrossRefGoogle Scholar
  101. 101.
    Annunziata P, Cioni C, Masi G, Tassi M, Marotta G, Severi S. Fingolimod reduces circulating tight-junction protein levels and in vitro peripheral blood mononuclear cells migration in multiple sclerosis patients. Sci Rep. 2018;8:15371.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2014;8:2148–60.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tostanoski LH, Chiu YC, Andorko JI, Guo M, Zeng X, Zhang P. Design of polyelectrolyte multilayers to promote immunological tolerance. ACS Nano. 2016;  https://doi.org/10.1021/acsnano.6b04001.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010;299:L760–70.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res. 2015;63:58–69.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Broza YY, Har-Shai L, Jeries R, Cancilla JC, Glass-Marmor L, Lejbkowicz I. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis. ACS Chem Neurosci. 2017;8:2402–13.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zhao X, Zhao H, Chen Z, Lan M. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 2014;14:210–20.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun. 2018;9:4904.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8:610–22.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Hekmatara T, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Matschke J. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol. 2009;28:153–64.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol. 2017;28:1457–72.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wu M, Zhang H, Tie C, Yan C, Deng Z, Wan Q. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun. 2018;9:4777.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jiang YW, Cheng HY, Kuo CL, Way TD, Lien JC, Chueh FS. Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. Environ Toxicol. 2018;  https://doi.org/10.1002/tox.22691.
  115. 115.
    Keller S, Schmidt MHH. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: Combination therapies for an effective treatment. Int J Mol Sci. 2017;18:1295.PubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhang H, Zhu Y, Sun X, He X, Wang M, Wang Z. Curcumin-loaded layered double hydroxide nanoparticles-induced autophagy for reducing glioma cell migration and invasion. J Biomed Nanotechnol. 2016;12:2051–62.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 2016;49:509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK, Winkles J. A decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release. 2017;267:144–53.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Plomin R, Owen MJ, McGuffin P. The genetic basis of complex human behaviors. Science. 1994;264:1733–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    G BDD, Hale Collaborators, Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet. 2015;386:2145–91.CrossRefGoogle Scholar
  121. 121.
    Ge T, Fan J, Yang W, Cui R, Li B. Leptin in depression: A potential therapeutic target. Cell Death Dis. 2018;9:1096.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lee Y, Subramaniapillai M, Brietzke E, Mansur RB, Ho RC, Yim SJ. Anti-cytokine agents for anhedonia: Targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther Adv Psychopharmacol. 2018;8:337–48.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lieberman A. Depression in Parkinson’s disease -- A review. Acta Neurol Scand. 2006;113:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Abdallah CG, Adams TG, Kelmendi B, Esterlis I, Sanacora G, Krystal JH. Ketamine’s mechanism of action: A path to rapid-acting antidepressants. Depress Anxiety. 2016;33:689–97.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    He X, Yang L, Wang M, Zhuang X, Huang R, Zhu R. Targeting the Endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem. 2017;42:2281–94.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Raabe FJ, Galinski S, Papiol S, Falkai PG, Schmitt A, Rossner MJ. Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr. 2018;4:23.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci. 2017;104:315–25.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L. Angiopep-conjugated electro-responsive hydrogel nanoparticles: Therapeutic potential for epilepsy. Angew Chem Int Ed Engl. 2014;53:12436–40.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Pedram MZ, Shamloo A, Alasty A, Ghafar-Zadeh E. Toward epileptic brain region detection based on magnetic nanoparticle patterning. Sensors (Basel). 2015;15:24409–27.CrossRefGoogle Scholar
  130. 130.
    Fu T, Kong Q, Sheng H, Gao L. Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016;2016:2412958.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Yu YH, Hsu YH, Chou YC, Fan CL, Ueng SW, Kau YC. Sustained relief of pain from osteosynthesis surgery of rib fracture by using biodegradable lidocaine-eluting nanofibrous membranes. Nanomedicine. 2016;12:1785–93.PubMedCrossRefGoogle Scholar
  132. 132.
    Jin HJ, An JM, Park J, Moon SJ, Hong S. “Chemical-pain sensor” based on nanovesicle-carbon nanotube hybrid structures. Biosens Bioelectron. 2013;49:86–91.PubMedCrossRefGoogle Scholar
  133. 133.
    Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2:497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Brown NF, Carter TJ, Ottaviani D, Mulholland P. Harnessing the immune system in glioblastoma. Br J Cancer. 2018;119:1171–81.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang L, Lockstone HE, Guest PC, Levin Y, Palotas A, Pietsch S. Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res. 2010;9:521–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations